计算;推算;计数设备的制造及其应用技术1.本发明涉及图像融合的领域,尤其涉及一种变物距情况下的远心镜头图像合成方法。背景技术:2.对于远心镜头,其物距一般是固定的。虽然远心镜头的景深较大,但为了达到理想的拍摄效果,依然需要对镜头进行物距调整。因此,对于有较大高度落差的物体,为了拍摄对各个高度的物体表面都进行拍摄,在现有的技术方案中需要多次进行物距调整,结果就造成对于同一物体,产生了多张拍摄图像,不便于后续进行图像处理分析操作,例如尺寸测量、检测等。3.针对上述应用场合,即使允许对拍摄到的多张图像分别进行处理分析,也会带来一定的弊端,例如随着拍摄图像的增多,对较多图像进行分别处理的时间也会变长,导致处理的实时性不高。技术实现要素:4.本发明的目的在于提供一种变物距情况下的远心镜头图像合成方法,用以解决现有针对同一物体在不同物距下拍摄的多张图像处理困难的问题。5.一方面,本发明实施例提供了一种变物距情况下的远心镜头图像合成方法,包括以下步骤:6.步骤1,针对有高度差的物体表面,通过采集模块获取不同物距下物体的图像;7.步骤2,对获取到的各图像进行梯度计算,得到各图像上不同坐标像素点的梯度幅值;8.步骤3,对比各像素点在不同图像上的梯度幅值大小,获取各像素点最大梯度幅值对应的图像编号;9.步骤4,判断像素点是否为图像边界像素点,若不是则进一步判断像素点坐标时最大梯度幅值所对应的的图像编号与其周围坐标像素点最大梯度幅值所对应的的图像编号是否相同,若是则进入步骤6;10.步骤5,根据步骤4的判断结果,结合物距、图像编号和梯度幅值进行插值计算,得到图像的非边界像素点在最终融合图像上的对应点;11.步骤6,计算图像边界像素点在融合图像上的对应点;12.步骤7,结合步骤5和步骤6的计算结果,得到完整的融合图像。13.进一步的,对获取的n张图像按照最佳物距由小到大的顺序进行排序,得到的最大物距差h为:14.h=hn-h115.其中,hn为第n张图像对应的物距,h1为第1张图像对应的物距。16.进一步的,所述步骤2还包括:17.步骤2-1,获取每张图像上各像素点的灰度值;18.步骤2-2,利用sobel算子分别计算各图像上各像素点的梯度幅值。19.进一步的,所述步骤3还包括:对每个像素点,分别对比相同坐标下像素点分别在n张图像的梯度幅值,并记下最大梯度幅值所对应的的图像编号index(x,y),即满足:20.g(x,y,index(x,y))≥g(x,y,i)21.其中,(x,y)表示像素点的坐标,g(x,y,index(x,y))表示第index(x,y)张图像上坐标为(x,y)的像素点的梯度幅值,g(x,y,i)表示第i张图像上坐标为(x,y)的像素点的梯度幅值,且i∈[1,n],1≤index(x,y)≤n。[0022]进一步的,所述步骤4还包括:对于坐标为(x,y)像素点,判断其是否满足以下条件:[0023]index(x,y)=index(x,y-1)=index(x,y+1)=index(x-1,y)=index(x+1,y)[0024]其中,坐标为(x,y-1)、(x,y+1)、(x-1,y)和(x+1,y)的像素点为坐标为(x,y)像素点的周围坐标像素点,index(x,y-1)、index(x,y+1)、index(x-1,y)和index(x+1,y)分别表示坐标为(x,y-1)、(x,y+1)、(x-1,y)和(x+1,y)的像素点最大梯度幅值所对应的的图像编号。[0025]进一步的,所述步骤5还包括:若步骤4中的判断结果为满足条件,则融合图像的计算式为:[0026]f1(x,y)=f(x,y,index(x,y))[0027]其中,f1(x,y)表示坐标(x,y)的非边界像素点在融合图像上对应的灰度值,f(x,y,index(x,y))表示第index(x,y)张图像上坐标为(x,y)的像素点的灰度值。[0028]进一步的,所述步骤5还包括:若步骤4中的判断结果为不满足条件,则融合图像的计算式为:[0029][0030]其中,f1(x,y)表示坐标(x,y)的非边界像素点在融合图像上对应的灰度值,m=x-1,n=y-1,[0031]r(m,n)的计算式如下:[0032][0033]其中,r(m,n)计算式中s的计算式如下:[0034][0035]其中,hindex(x,y)表示像素点(x,y)的最大梯度幅值所对应的图像编号index(x,y)所对应的图像的物距,1≤index(x,y)≤n。[0036]进一步的,所述步骤6还包括:对于边界像素点,其融合图像的计算式为:[0037][0038]其中,f2(x,y)表示坐标为(x,y)的图像边界像素点在融合图像上对应的灰度值,f(x,y,i)表示第i张图像上坐标为(x,y)的像素点的灰度值。[0039]本发明的有益效果为:本发明提出的变物距情况下的远心镜头图像合成方法,能够将进行多次物距调整拍摄后所得到的多张不同物距的图像进行融合,最终获得一张包含物体各个高度的清晰表面的融合图像,由于对一张融合图像进行图像处理分析的时间小于分别对拍摄到的多张图像进行处理所需的时间,因此更加便于后续进行图像处理分析操作,例如尺寸测量、检测等,本发明能够将不同物距下拍摄的多张图像融合为一张,且在处理过程中根据实际情况判断各像素点是否需要进行融合,最大限度提高后续图像处理的速度和融合结果的准确性。附图说明[0040]为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:[0041]图1为本发明实施例中提供的变物距情况下的远心镜头图像合成方法的整体流程示意图;[0042]图2为本发明实施例中在不同物距下采集图像的示意图。具体实施方式[0043]为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本发明实施例做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。[0044]在本说明书的描述中,所使用的“包含”、“包括”、“具有”、“含有”等,均为开放性的用语,即意指包含但不限于。参考术语“一个实施例”、“一个具体实施例”、“一些实施例”、“例如”等的描述意指结合该实施例或示例描述的具体特征、结构或者特点包含于本技术的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。各实施例中涉及的步骤顺序用于示意性说明本技术的实施,其中的步骤顺序不作限定,可根据需要作适当调整。[0045]本发明实施例中提供了一种变物距情况下的远心镜头图像合成方法,图1为该方法的整体流程示意图,如图1所示,该方法包括以下步骤:[0046]步骤1,针对有高度差的物体表面,通过采集模块获取不同物距下物体的图像;[0047]其中,参照图2的示意,采集模块能够在一定的物距范围内,使得到的图像放大倍率不会变化;采集模块为摄像头,优选为远心镜头。[0048]需要说明的是,对于表面存在高度落差的物体,为了获取该物体各高度差表面的清晰图像,采集时需要多次进行物距调整,从而对各个高度的物体表面都进行图像拍摄。[0049]记录采集模块获取的n张图像及各图像对应的物距hi,hi表示第i张图像对应的物距,i∈[1,n]。[0050]步骤1还包括:对获取的n张图像按照最佳物距由小到大的顺序进行排序,其中最佳物距指:对采集模块采集到的图像,其在一定物距范围内为清晰图像,则该物距范围称为最佳物距范围,清晰图像所对应的物距为其最佳物距。[0051]其中,对于图像的清晰度判断可以采用图像清晰度评价方法进行判断,如tenengrad梯度方法、laplacian梯度方法等,也可以采用人工识别的方式进行判断。本发明中由用户进行清晰图像的选取。[0052]得到的最大物距差h为:[0053]h=hn-h1[0054]其中,hn为第n张图像对应的物距,h1为第1张图像对应的物距。[0055]步骤2,对获取到的各图像进行梯度计算,得到图像上各图像上不同坐标像素点的梯度幅值;[0056]其中,步骤2还包括:[0057]步骤2-1,获取每张图像上各像素点的灰度值;[0058]本发明可以采用gamma校正算法计算得到像素点的灰度值f(x,y,i),f(x,y,i)表示第i张图像上坐标为(x,y)的像素点的灰度值。[0059]步骤2-2,利用sobel算子分别计算各图像上各像素点的梯度幅值。[0060]步骤3,对比各像素点在不同图像上的梯度幅值大小,获取各像素点最大梯度幅值对应的图像编号;[0061]具体的,步骤3还包括:对每个像素点,分别对比相同坐标下像素点分别在n张图像的梯度幅值,并记下最大梯度幅值所对应的图像编号index(x,y),即满足:[0062]g(x,y,index(x,y))≥g(x,y,i)[0063]其中,(x,y)表示像素点的坐标,g(x,y,index(x,y))表示第index(x,y)张图像上坐标为(x,y)的像素点的梯度幅值,g(x,y,i)表示第i张图像上坐标为(x,y)的像素点的梯度幅值,且i∈[1,n],1≤index(x,y)≤n。[0064]步骤4,判断像素点是否为图像边界像素点,若不是则进一步判断像素点坐标时最大梯度幅值所对应的的图像编号与其周围坐标像素点最大梯度幅值所对应的的图像编号是否相同,若是则进入步骤6;[0065]其中,步骤4还包括:[0066]步骤4-1,判断像素点是否为图像边界像素点,若不是则进入步骤4-2,若是则直接进入步骤6;[0067]步骤4-2,对于坐标为(x,y)像素点,判断其是否满足以下条件:[0068]index(x,y)=index(x,y-1)=index(x,y+1)=index(x-1,y)=index(x+1,y)[0069]其中,坐标为(x,y-1)、(x,y+1)、(x-1,y)和(x+1,y)的像素点为坐标为(x,y)像素点的周围坐标像素点,index(x,y-1)、index(x,y+1)、index(x-1,y)和index(x+1,y)分别表示坐标为(x,y-1)、(x,y+1)、(x-1,y)和(x+1,y)的像素点最大梯度幅值所对应的的图像编号。[0070]步骤5,根据步骤4的判断结果,结合物距、图像编号和梯度幅值进行插值计算,得到图像的非边界像素点在最终融合图像上的对应点;[0071]具体的,步骤5还包括:[0072]若步骤4-2中的判断结果为满足条件,则融合图像的计算式为:[0073]f1(x,y)=f(x,y,index(x,y))[0074]其中,f1(x,y)表示坐标(x,y)的非边界像素点在融合图像上对应的灰度值;[0075]f(x,y,index(x,y))表示第index(x,y)张图像上坐标为(x,y)的像素点的灰度值。[0076]若步骤4-2中的判断结果为不满足条件,则融合图像的计算式为:[0077][0078]其中,f1(x,y)表示坐标(x,y)的非边界像素点在融合图像上对应的灰度值,m=x-1,n=y-1,[0079]r(m,n)的计算式如下:[0080][0081]其中,r(m,n)计算式中s的计算式如下:[0082][0083]其中,hindex(x,y)表示像素点(x,y)的最大梯度幅值所对应的图像编号index(x,y)所对应的图像的物距,1≤index(x,y)≤n。[0084]通过步骤5的计算,除边界像素点之外,图像内部的各像素点在融合图像上对应的点f1(x,y)均已获得。[0085]步骤6,计算图像边界像素点在融合图像上的对应点;[0086]其中,步骤6还包括:对于边界像素点,其融合图像的计算式为:[0087][0088]其中,f2(x,y)表示坐标为(x,y)的图像边界像素点在融合图像上对应的灰度值,f(x,y,i)表示第i张图像上坐标为(x,y)的像素点的灰度值。[0089]步骤7,结合步骤5和步骤6的计算结果,得到完整的融合图像。[0090]具体的,结合非边界点和边界点在最终融合图像上的对应点,得到的即为完整的融合图像。[0091]本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、cd-rom、光学存储器等)上实施的计算机程序产品的形式。[0092]本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。[0093]这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。[0094]这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。[0095]以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!
内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,发布内容不收取任何费用也不接任何广告!
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
一种变物距情况下的远心镜头图像合成方法与流程
作者:admin
2022-08-31 13:23:19
856
关键词:
计算;推算;计数设备的制造及其应用技术
专利技术
- 下一篇: 一种用于舞蹈训练的压腿装置
- 上一篇: 一种二次封合包胶刀座装置的制作方法