发布信息

一种酸改性的H-Beta沸石催化剂及其制备方法和应用

作者:admin      2022-08-31 16:48:43     281



物理化学装置的制造及其应用技术一种酸改性的h-beta沸石催化剂及其制备方法和应用技术领域1.本发明属于沸石催化和生物油制备领域,尤其涉及一种酸改性的h-beta沸石催化剂及其制备方法和应用。背景技术:2.木质素是包括酚羟基在内的芳香族化合物的最大天然来源,是良好的可降解的绿色高分子化工材料,能够与高分子产生较强的分子间的作用力,这些特性赋予木质素在复合材料领域的广泛应用,使木质素代替或者部分代替石油化工原料的成为可能。木质素直接燃烧是最简便的能源利用方式之一,但利用率低、对环境污染大。利用热解技术在少氧或绝氧条件下将木质素转化为高附加值生物油会显著提高生物质精炼的经济可行性,然而,木质素热解过程中易生成焦炭,生成的生物油含氧量较高、热值低、目标产物选择性低,限制了其应用,通过在热解木质素的过程中添加合适的催化剂可以提高目标产物的选择性和收率,降低生物油含氧量,显著提高生物油品质。3.近年来,沸石分子筛催化剂因其具有独特的孔道结构及酸性,具有择型和催化以及完备的脱氧效果,可制备富含芳烃类的高品质生物油,成为目前生物质催化热解研究的重点。木质素催化热解常用的沸石分子筛有hzsm-5,hy,h-beta,其中,h-beta沸石因其独特的大孔结构和三维孔道,具有可调控的酸性质等优势使其在石化领域应用广泛。作为一种固体酸催化剂,沸石分子筛中b酸(也称质子酸)来源于骨架四面体铝,而l(lewis)酸(也称路易斯酸)主要来源于非骨架六面体铝,因此,沸石中铝的存在方式直接影响其酸值。但常规h-beta沸石分子筛b酸和l酸不可调控,酸性较低,si/al比仅为12,较低的酸性导致沸石催化性能较差,需要对其进行酸改性处理提高其催化性能。而本技术改性后的h-beta沸石能够按照实际需求调控b酸和l酸位点,si/al比达到605。4.目前,h-beta分子筛改性的制备方法主要有水热合成法、分子筛转晶法。水热合成法通常以阳离子聚合物(如:四乙基氢氧化铵)为模板剂,有时需要用hf作为矿化剂。水热法应用十分广泛,但是晶化时间长达5-10天,所需能耗高,并且含有剧毒hf,严重污染环境。分子筛转晶法是指先合成一种分子筛,然后在适宜的条件下对分子筛转晶形成目标分子筛。该方法制备复杂,重复性差,在合成好的分子筛中会含有杂晶,效果不理想。本发明采用后合成法,后合成法是指在常规的h-beta分子筛中首先对沸石进行酸处理脱除骨架中的al形成空位,然后通过固态离子交换法将金属离子引入到形成的空位中,从而获得目标分子筛。相比水热合成法和分子筛转晶法,该方法可以制备水热晶化不易制备的分子筛,对环境污染小,能耗低,做法简单,重复性好。5.截至目前,尚未见报道相关酸改性沸石用于硫酸盐木质素催化热解的应用上。开发绿色、低成本、易于规模化放大且易于回收再使用的催化热解工艺,为木质素的高效利用提供了契机,也为来源于生物质的功能性的化学品的开发提供了新的替代原料和增长点,为木质素制备工业化学品提供了切实可行的路径,具有广阔的前景。技术实现要素:6.本发明要解决的技术问题,在于提供一种酸改性的h-beta沸石催化剂及其制备方法以及在催化热解木质素制备生物油中的应用。7.本发明是这样实现的:8.本发明首先提供了一种酸改性h-beta沸石催化剂的制备方法,首先通过酸处理h-beta沸石,获得deal-beta沸石,然后通过固态离子交换法将金属离子掺入到沸石的硅铝空位中获得酸改性沸石催化剂。9.进一步地,所述酸改性采用硝酸溶液。通常的,这里的酸不仅能采用硝酸,其它无机酸也同样适用。但是有机酸酸性较弱,脱铝效果不如无机酸效果好,故不采用。10.更进一步地,所述硝酸的浓度为3m-14.4m。11.进一步地,所述酸处理的温度为70-120℃。12.进一步地,所述h-beta沸石在酸改性前在500-600℃马弗炉中进行煅烧,以除去杂质。13.进一步地,所述固态离子交换法,是将脱铝沸石deal-beta与含金属离子化合物在室温下研磨,接着在550℃焙烧4h,室温条件下冷却,从母体脱铝材料deal-beta得到酸改性沸石。14.更进一步地,所述固态离子交换的离子不仅可以采用锡,也可以采用铝、铁、锗等。15.进一步地,所述含金属离子化合物包括醋酸锡(ⅱ)或乙酰丙酮铝(ⅲ),脱铝沸石deal-beta与所述醋酸锡(ⅱ)或乙酰丙酮铝(ⅲ)的质量比为6:(0.2-2.0)。16.进一步地,所述制备方法具体包括如下步骤:17.(1)在500-600℃马弗炉中煅烧h-beta沸石4-12h以除去杂质;18.(2)将步骤(1)中煅烧后的h-beta沸石在4-14.4m hno3溶液中进行酸处理8-12h进行脱铝处理;19.(3)将步骤(2)酸处理后的h-beta沸石离心洗涤至中性,放入80-120℃干燥箱干燥8-12h后,再于500-600℃焙烧4-8h,获得脱铝沸石deal-beta;20.(4)将步骤(3)中获得的脱铝沸石deal-beta与金属离子按照质量比为6:(0.2-2.0)在室温下研磨20min,以便金属离子能够均匀的掺入到脱铝沸石的硅铝空位上。21.(5)将步骤(4)样品在500-600℃焙烧3-6h后,室温条件下冷却,从母体脱铝材料deal-beta得到(sn)ssie-beta。22.本发明还提供了由上述制备方法制得的酸改性h-beta沸石催化剂。23.最后,本发明提供了所述酸改性h-beta沸石催化剂在硫酸盐木质素催化热解制备生物油中的应用。24.进一步地,所述催化,是将酸改性的h-beta沸石催化剂与硫酸盐木质素按照质量比1:1混合,随后在氮气氛围内的管式炉中以600℃催化热解10min,即制得生物油。25.本发明具有如下优点:26.(1)对酸改性后的沸石进行吡啶ftir测试,结果表明本发明改性后的h-beta沸石分子筛具有丰富的酸性位点,并且可以根据实际需要对沸石b酸和l酸进行调控,对多种含氧官能团的选择性氧化反应均表现出优异的催化转化率。对改性前后的生物油进行hsqc-nmr表征,结果显示改性后的沸石对生物油芳香烃和脂肪烃表现出优异的转化率。而且改性后的沸石具有易回收、重复使用性好的特点。27.(2)本发明研究了酸改性h-beta沸石在木质素催化热解中的最优反应条件,为开发绿色、低成本、易于规模化放大且易于回收再使用的催化热解工艺,为木质素的高效利用提供了契机,也为来源于生物质的功能性的化学品的开发提供了新的替代原料和增长点,符合绿色化学和可持续发展战略的重要组成部分,也为木质素制备工业化学品提供了切实可行的路径,具有广阔的前景。28.(3)通过调控h-beta沸石的酸性,一方面可以降低过程的活化能提高过程的转化速率,另一方面可以通过提高催化剂的催化活性获得更高收率的目标产物,最终转化为高附加值的生物油。利用酸改性h-beta沸石催化热解木质素,可以在制备生物油的过程中有效脱除生物油含氧量,从而能同步有效发挥沸石分子筛酸性作用,获得高产率、含氧官能团少的生物油。催化热解实验结果表明改性后的h-beta沸石催化热解制备生物油的产率相比常规h-beta沸石提高了70-80%,hsqc-nmr表征结果显示改性后的生物油含氧官能团含量降低。该发明技术经济实惠、工艺流程简便,易于放大生产,具有显著的经济和生态效益。所制得的生物油含氧官能团含量低、目标产物选择性比较高。附图说明29.下面参照附图结合实施例对本发明作进一步的说明。30.图1为实施例10中改性后热解油的hsqc-nmr光谱中的芳香族c-h键。从左到右是h-beta、(sn)ssie-beta1、(sn)ssie-beta2和(al)ssie-beta3。31.图2为实施例10中改性后热解油的hsqc-nmr光谱中的脂肪族c-h键。从左到右是h-beta、(sn)ssie-beta1、(sn)ssie-beta2和(al)ssie-beta3。32.图3为实施例10中改性后硫酸盐木质素催化热解的热解油、炭(不包括沸石的重量)和气体的产率(%)。具体实施方式33.实施例134.采用元素分析仪分析实验所用硫酸盐木质素元素含量(表1),该木质素是从南方某造纸厂造纸黑液中采用硫酸酸析提取。35.表1:酸改性后沸石物理化学性质[0036][0037]实施例2[0038](1)将在马弗炉中550℃煅烧4h后的h-beta沸石封装后备用。[0039](2)将步骤(1)中煅烧后的h-beta沸石在13.0m hno3溶液中100℃酸处理12h部分脱铝。[0040](3)将步骤(2)酸处理后的h-beta沸石离心洗涤至中性,放入100℃干燥箱干燥12h后,再于550℃焙烧6h,获得脱铝沸石deal-beta1。[0041]实施例3[0042](1)将在马弗炉中500℃煅烧6h后的h-beta沸石封装后备用。[0043](2)将步骤(1)中煅烧后的h-beta沸石在7.1m hno3溶液中80℃酸处理10h部分脱铝。[0044](3)将步骤(2)酸处理后的h-beta沸石离心洗涤至中性,放入100℃干燥箱干燥12h后,再于550℃焙烧6h,获得脱铝沸石deal-beta2。[0045]实施例4[0046](1)将在马弗炉中600℃煅烧6h后的h-beta沸石封装后备用。[0047](2)将步骤(1)中煅烧后的h-beta沸石在4.8m hno3溶液中120℃酸处理10h部分脱铝。[0048](3)将步骤(2)酸处理后的h-beta沸石离心洗涤至中性,放入100℃干燥箱干燥12h后,再于550℃焙烧6h,获得脱铝沸石deal-beta3。[0049]实施例5[0050]采用扫描电镜eds测定了实施例2-4酸处理后沸石的si、al含量(表2)。由表2可知随着hno3浓度的增加,h-beta脱铝反应导致原料deal-beta3的si/al比增大,脱铝程度按deal-beta3《deal-beta2《deal-beta1的顺序增加。结果表明实施例2采用13.0m hno3溶液中100℃酸处理12h的h-beta脱铝效果最好。[0051]表2:酸改性后沸石物理化学性质[0052][0053]实施例6[0054](1)将实施例2中获得的脱铝沸石deal-beta1取6g与1.3g醋酸锡(ⅱ)室温下研磨20min。将研磨后的样品在550℃焙烧4h后,室温条件下冷却,从母体脱铝材料deal-beta1得到(sn)ssie-beta1。[0055](2)将步骤(1)所述的(sn)ssie-beta1与实施例1硫酸盐木质素以1:1的质量比混合,随后在氮气氛围内的管式炉中600℃催化热解10min,制得生物油。[0056]实施例7[0057](1)将实施例2中获得的脱铝沸石deal-beta1取6g与0.62g醋酸锡(ⅱ)室温下研磨20min。将研磨后的样品在550℃焙烧4h后,室温条件下冷却,从母体脱铝材料deal-beta1得到(sn)ssie-beta2。[0058](2)将步骤(1)所述的(sn)ssie-beta2与实施例1硫酸盐木质素以1:1的质量比混合,随后在氮气氛围内的管式炉中600℃催化热解10min,制得生物油。[0059]实施例8[0060](1)将实施例2中获得的脱铝沸石deal-beta1取6g与0.66g乙酰丙酮铝(ⅲ)室温下研磨20min。将研磨后的样品在550℃焙烧4h后,室温条件下冷却,从母体脱铝材料deal-beta1得到(al)ssie-beta3。[0061](2)将步骤(1)所述的(al)ssie-beta3与实施例1硫酸盐木质素以1:1的质量比混合,随后在氮气氛围内的管式炉中600℃催化热解10min,制得生物油。[0062]实施例9[0063]采用吡啶ftir测定了实施例2酸处理和6-8酸改性后沸石的酸性位点(表3)。由表3可知随着引入锡离子含量的增加,b酸几乎不变,l酸性增加;随着铝离子的引入,l酸几乎不变,b酸性增加。证明沸石酸性可控。[0064]表3:酸改性后沸石物理化学性质[0065][0066]实施例10[0067]采用hsqc-nmr核磁共振表征实施例6-8酸改性后的(sn)ssie-beta1、(sn)ssie-beta2和(al)ssie-beta3沸石催化剂催化热解硫酸盐木质素测定生物油的催化性能,根据裂解油中化合物的1h-nmr和13c-nmr化学位移,可得出硫酸盐木质素催化裂解油中芳香族c-h键和脂肪族c-h键(附图1-2),结果表明实施例6-8热解得到的生物油脱氧效果相比h-beta沸石都有较大提升,其中优选条件实施例6热解得到的生物油含氧官能团含量最低,脱氧效果最好。优选条件实施例6下(sn)ssie-beta1沸石催化剂对木质素的转化率为16.4%,较未改性催化剂热解提高了74.5%(附图3)。[0068]虽然以上描述了本发明的具体实施方式,但是熟悉本技术领域的技术人员应当理解,我们所描述的具体的实施例只是说明性的,而不是用于对本发明的范围的限定,熟悉本领域的技术人员在依照本发明的精神所作的等效的修饰以及变化,都应当涵盖在本发明的权利要求所保护的范围内。









图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!




内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,发布内容不收取任何费用也不接任何广告!




免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

相关内容 查看全部