测量装置的制造及其应用技术1.本发明涉及电力电子故障诊断领域,具体是基于改进神经网络的模块化多电平变换器电容监测方法。背景技术:2.在能源问题以及环境问题的背景下,新能源发电以及分布式发电已逐渐成为目前广泛关注的问题。这种发电方式因其自身特点,需要柔性输变电技术来满足其间歇性等特点。模块化多电平变换器通常被作为柔性直流输电系统的首选,具有开关器件应力小,电压、电流波形质量高,输出电压调节灵活等优点。3.模块化多电平变换器中集成了大量子模块,每个子模块中包含一个或多个模块电容,电容随使用时间增加,容值降低很大程度上影响了该系统的可靠运行,因此需要进行对模块电容健康情况的监侧。技术实现要素:4.本发明的目的在于提供基于改进神经网络的模块化多电平变换器电容监测方法,通过在已有的模块化多电平变换器的电容故障诊断基础上,提取能够反映故障的特征加入了小波包分解和信号积分的方法,提高电容监测的精度并简化计算的复杂度。5.本发明的目的可以通过以下技术方案实现:6.基于改进神经网络的模块化多电平变换器电容监测方法,所述电容监测方法包括以下步骤:7.第一步:搭建模块化多电平变换器,选择需要获取的电路信息,监测电容以及相应电路信息数据。8.第二步:利用信号积分和小波包分解的方法对采集的数据进行故障特征提取。9.第三步:制作数据集,划分训练集、验证集和测试集。10.第四步:建立改进的神经网络模型,确定模型神经元个数,损失函数,激活函数,加入遗传算法来优化神经网络参数的初始值,采用模拟退火算法反向传播调整参数。11.第五步:用训练集对所建立模型进行训练,用验证集对模型进行评估,得到模型后用测试集测试模型准确度。12.进一步的,所述遗传算法步骤如下:13.步骤1:染色体使用二进制编码,先根据的神经网络参数数量确定染色体的长度,设置种群数,最大进化代数,交叉、变异概率,生成种群数。14.步骤2:选择神经网络预测输出误差作为适应度函数,计算个体适应度。15.步骤3:选择种群中适应度大的个体留下构成新种群,根据交叉概率对新种群中每两个染色体进行交叉操作,生成的子代根据变异概率进行变异。16.步骤4:重复步骤2,3直到达到最大进化代数找到适应度最大的染色体,进行解码得到最优的权值和阈值参数赋给神经网络。17.进一步的,所述模拟退火算法设置温度参数t,温度参数t会随迭代次数每次变为原先的0.9倍,在神经网络反向传播过程中,遇到损失函数比上次迭代结果上升的情况时进行判断,随机生成一个0到1的数和概率p比较,若大于概率p,则按损失函数梯度上升方向调整参数,否则均沿损失函数梯度下降方向调整参数,该概率函数的计算如下:[0018][0019]其中loss(n)为第n次迭代的损失函数。[0020]进一步的,所述选择需要获取的电路信息是针对于模块化多电平变换器选择的信息,选择需要获取的电路信息包括子模块中开关管的开关信号、桥臂上的桥臂电流和直流电压。[0021]进一步的,所述故障特征提取对开关信号进行积分,并加入模块开关信号在所在桥臂上所占比例,通过滤波器得到桥臂电流的二倍基频分量,结合小波包分解的方法提取该分量的低频部分能量特征。[0022]进一步的,所述小波包分解对桥臂电流二倍频分量进行分解:[0023][0024][0025]其中a为尺度函数,b为频率,h、g分别是低通滤波器和高通滤波器系数,l是位置系数,用db4小波对电流进行6层小波包分解,得到对应的小波包系数矩阵。[0026]表示所述小波基在该频段节点和输入信号的拟合程度,对各节点对应频段的能量信息通过下述公式计算:[0027][0028]其中e(i)表示第i个节点的能量,pi,j为第i个节点中的第j个节点系数,k为节点i所具有的节点系数的总数。[0029]进一步的,所述损失函数使用均方根误差,均方根误差是预测数据和原始数据对应的误差的平方和的均值并开平方根:[0030][0031]其中ypre,ylabel为别为预测数据和原始数据,n表示计算均方根误差的样本数。[0032]本发明的有益效果:[0033]1、本发明电容监测方法在训练模型的过程中加入了遗传算法和模拟退火的策略,提高了模型的精度;[0034]2、本发明电容监测方法能够在线监测电路中电容器的健康情况,以保证模块化多电平变换器稳定运行;[0035]3、本发明电容监测方法将智能算法应用于传统的故障诊断领域,为该类故障问题提供了一种新的诊断方法。附图说明[0036]下面结合附图对本发明作进一步的说明。[0037]图1是本发明的模块化多电平变换器电容故障诊断方法流程图;[0038]图2是以db4小波基为例的小波波形图;[0039]图3是本发明的神经网络结构图;[0040]图4是本发明的神经网络中的激活函数图;[0041]图5是本发明改进的神经网络的流程示意图。具体实施方式[0042]下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。[0043]基于改进神经网络的模块化多电平变换器电容监测方法,如图1所示,电容监测方法包括以下步骤:[0044]第一步:搭建模块化多电平变换器[0045]先搭建模块化多电平变换器,然后选择需要获取的电路信息,监测电容以及相应电路信息数据,选择需要获取的电路信息包括采集模块化多电平变换器子模块中开关管的开关信号、桥臂电流和直流母线上电压,电路信息按照一个周期进行收集。[0046]第二步:故障特征提取[0047]对采集的数据进行特征提取,首先直流母线电压比较平稳基本不变,直接计算一个周期内的平均值;[0048]对开关信号的处理按采集周期进行信号的积分,将原本的脉冲信号转化一个数值,根据电容值与桥臂电流还有模块电压之间的关系,由于均压控制,不同模块间电容值的不一致时该数值存在差异,进一步去除中心值可以进一步使差异变大,该特征描述了整个桥臂上模块间的差异,为了确定计算的电容属于哪个子模块,又加入了该模块的积分值在整个桥臂上的积分值中占有的比例;[0049]对桥臂电流的处理,先通过一个带通滤波器,得到桥臂电流关于参考电压频率的二倍基频的电流分量,对该分量进行小波包分解,提取低频部分能量,选择db4小波函数为小波基,小波函数图像如图2所示,对输入的电流信号进行6层的小波包分解,具体步骤如下:[0050][0051][0052]其中a为尺度函数,b为频率,h、g分别是低通滤波器和高通滤波器系数,l是位置系数,得到对应的小波包系数矩阵,表示小波基在该频段节点和输入信号的拟合程度,对各节点对应频段的能量信息,通过下述公式计算得到:[0053][0054]其中e(i)表示第i个节点的能量,pi,j为第i个节点中的第j个节点系数,k为节点i所具有的节点系数的总数。[0055]选择前5个频段的能量去中心化以后作为电容故障特征,在模块电容发生变化时,该特征变化趋势明显。[0056]第三步:制作数据集[0057]划分数据集对第二步中提取后的数据添加实际电容值标签,随机打乱数据集顺序后,按照7:3比例划分训练集和验证集。[0058]第四步:搭建神经网络[0059]搭建神经网络的回归模型并用提取后的特征对模型进行训练,神经网络结构如附图3所示,首先确定模型结构,模型结构由输入层、隐含层和输出层组成,每层有数十到数百个神经元构成,同一层内的神经元间相互不连接,不同层之间相邻层内的神经网络通过权值和阈值进行全连接,模型的搭建选择单隐含层,隐含层的激活函数为sigmoid函数,sigmoid函数的公式为:[0060][0061]其中s(x)为激活后的输出值,x为隐含层后输入给激活函数的值,附图4为该函数图像。[0062]输入层的输入维度和模块化多电平变换器中子模块个数有关,输入的数据为直流母线电压,通过第二步中提取的桥臂电流能量,开关信号的积分以及开关信号积分的占比,在隐含层中设置了90个神经元,将均方根误差作为模型的损失函数:[0063][0064]其中ypre,ylabel为别为预测数据和原始数据,n表示计算均方根误差的样本数。[0065]第五步:训练模型[0066]改进的神经网络模型训练过程分两部分,分别是模型参数初始值选择和反向传播的改进,整体模型训练流程如图5所示。[0067]改进神经网络在结构上通过遗传算法来优化神经网络权值和阈值的初始值,首先求解神经网络最优初始值的具体步骤如下:[0068]步骤1:先确定网络结构,染色体使用二进制编码,根据的神经网络结构参数数量计算染色体的长度,随机生成初始种群数,最大进化代数,交叉、变异概率,生成种群数;[0069]步骤2:选择神经网络预测输出误差作为适应度函数,计算个体适应度;[0070]步骤3:选择种群中适应度大的个体留下构成新种群,根据交叉概率对新种群中每两个染色体进行交叉操作,生成的子代根据变异概率进行变异;[0071]步骤4:重复步骤2,3直到达到最大进化代数,找到适应度最大的染色体,进行解码得到最优的权值和阈值参数赋给神经网络。[0072]其次进行模型训练正向传播结果得到预测的输出值,预测的输出值与实际样本中的值进行均方根值的计算,得到误差作为损失函数,将每次迭代产生的损失函数和上次迭代的损失函数比较,若损失下降,则继续按梯度下降方向优化参数,若损失上升则进入模拟退火中进行是否退火的判断。[0073]模拟退火中比较两次迭代损失函数,先设置一个新的温度参数t,该参数会随着迭代次数线性减小,该参数每次减小变为原先的0.9倍,在神经网络反向传播过程中,遇到损失函数比上次迭代结果上升的情况时进行判断,并从0到1中随机生成一个数与退火的概率函数p进行比较,该概率函数的计算如下:[0074][0075]其中p为概率,loss(n+1)和loss(n)分别是第n+1次迭代正向传播前后的损失函数,当产生的随机数大于概率函数时选择按梯度上升的方向优化参数,反之继续按梯度下降方向优化参数。[0076]当达到最大迭代次数或模型误差满足所设条件后结束训练,并用验证集对所建立模型训练结果进行验证,评估模型的泛化能力,得到模型后用测试集计算模型准确性。[0077]第四步:将训练完成后的模型加入模块化多电平变换器的控制中,可以实现对其模块电容健康情况的在线监测。[0078]在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。[0079]以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。
图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!
内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,发布内容不收取任何费用也不接任何广告!
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
基于改进神经网络的模块化多电平变换器电容监测方法
作者:admin
2022-08-31 17:19:52
473
关键词:
测量装置的制造及其应用技术
专利技术
- 下一篇: 一种区域电力负荷的短期预测方法与流程
- 上一篇: 融合定位方法、装置、车辆及存储介质与流程