发布信息

丙烯酸酯-硅氧烷共聚物颗粒的水性分散体的制作方法

作者:admin      2022-09-24 09:25:40     299



有机化合物处理,合成应用技术丙烯酸酯-硅氧烷共聚物颗粒的水性分散体背景技术:1.本发明涉及包含丙烯酸酯单体和硅氧烷-丙烯酸酯单体的结构单元的共聚物颗粒的水性分散体。本发明的组合物可用于涂层和个人护理应用。2.包含用丙烯酸酯和硅氧烷基团官能化的共聚物颗粒的水性杂化胶乳组合物在涂层和化妆品应用中提供改善的性能,诸如改善的耐污性和耐溶剂性、拒水和拒油性、非生物结垢特性以及与所有丙烯酸组合物相比增加的触觉反馈。3.xiao,j.等人(prog.org.coat.2018,116,1-6)和zhang,b.等人(appl.surf.sci.2007,254,452-458)报告了硅氧烷-丙烯酸杂化颗粒的聚合物分散体的制备。然而,本发明人已经示出了用于制备这些分散体的方法,以产生具有高水平凝胶和未反应单体的胶乳。高浓度凝胶的形成是工艺效率低下的强有力指标,它可导致反应器结垢并导致最终涂层的性质劣化。此外,这些报道的方法中的每一个方法中掺入的含硅氧烷单体的浓度显著小于10重量%,这限制了分散体的有效性。广泛接受的是,在最终分散的共聚物颗粒中实现相对高水平的掺入的含硅氧烷的单体(例如,>20重量%)导致涂层和个人护理制剂添加剂在所需性质相关的含硅氧烷的低聚物和聚合物方面表现出改进。4.因此,制备用相对高浓度的含硅氧烷单体的结构单元官能化的硅氧烷-丙烯酸酯共聚物颗粒的水性分散体将是有利的。技术实现要素:5.本发明通过提供包含共聚物颗粒的水性分散体的组合物来解决本领域的需要,该共聚物颗粒的z均粒径在50nm至500nm范围内并且基于共聚物颗粒的重量计包含a)40重量%至98.8重量%的丙烯酸酯单体的结构单元;b)0.1重量%至5重量%的酸性单体的结构单元;和c)1重量%至59.8重量%的式i的硅氧烷丙烯酸酯单体的结构单元:[0006][0007]其中r是h或ch3;[0008]r1为h或ch3;[0009]每个r2独立地是ch3或o-si(ch3)3;[0010]y为-ch2-或-ch2ch2-;并且[0011]x为0或1;[0012]条件是当x为1时,r1为h;当y为-ch2-时,r1为h;并且当y为-ch2ch2-时,r1为ch3并且x为0;[0013]其中所述水性分散体中所述共聚物颗粒的固含量在30重量%至55重量%的范围内,并且a)所述水性分散体的水相包含不大于1000ppm的式i的单体;或b)所述水性分散体的水相包含不大于10000ppm的凝结物;其中所述组合物还包含:[0014]a)基于所述共聚物颗粒的重量计0.5重量%至5重量%的式ii的非离子表面活性剂:[0015][0016]其中n为0至10;p为2至30,条件是p≥n;并且r3为直链或支链的c3-c16烷基基团;以及[0017]b)基于所述共聚物颗粒的重量计0.5重量%至5重量%的式iii的阴离子表面活性剂:[0018][0019]其中r4为c6-c20烷基;m为0至10;并且m为li、na或k。[0020]本发明通过向具有低凝结物(凝胶)形成的胶乳颗粒中提供具有高掺入硅氧烷基单体的胶乳来解决本领域的需要。具体实施方式[0021]本发明是一种组合物,其包含具有在50nm至500nm范围内的z均粒度的共聚物颗粒的水性分散体,并且基于所述共聚物颗粒的重量计包含a)40重量%至98.8重量%的丙烯酸酯单体的结构单元;b)0.1重量%至5重量%的酸性单体的结构单元;和c)1重量%至59.8重量%的式i的硅氧烷丙烯酸酯单体的结构单元:[0022][0023]其中r是h或ch3;[0024]r1为h或ch3;[0025]每个r2独立地是ch3或o-si(ch3)3;[0026]y为-ch2-或-ch2ch2-;并且[0027]x为0或1;[0028]条件是当x为1时,r1为h;当y为-ch2-时,r1为h;并且当y为-ch2ch2-时,r1为ch3并且x为0;[0029]其中所述水性分散体中所述共聚物颗粒的固含量在30重量%至55重量%的范围内,并且a)所述水性分散体的水相包含不大于1000ppm的式i的单体;或b)所述水性分散体的水相包含不大于10000ppm的凝结物;其中所述组合物还包含:[0030]a)基于所述共聚物颗粒的重量计0.5重量%至5重量%的式ii的非离子表面活性剂:[0031][0032]其中n为0至10;p为2至30,条件是p≥n;并且r3为直链或支链的c3-c16烷基基团;以及[0033]b)基于所述共聚物颗粒的重量计0.5重量%至5重量%的式iii的阴离子表面活性剂:[0034][0035]其中r4为c6-c20烷基;m为0至10;并且m为li、na或k。[0036]如本文所用,指定单体的术语“结构单元”是指单体在聚合后的残留物。例如,甲基丙烯酸甲酯(mma)的结构单元如下说明:[0037][0038]其中虚线表示结构单元与聚合物主链的连接点。[0039]如本文所用,术语“丙烯酸酯单体”是指一种或多种丙烯酸酯和/或甲基丙烯酸酯单体。合适的丙烯酸酯单体的实例包括mma、甲基丙烯酸正丁酯(bma)、丙烯酸乙酯(ea)、丙烯酸正丁酯(ba)和丙烯酸2-乙基己酯(2-eha)。优选地,至少80重量%,并且更优选至少90重量%的丙烯酸酯单体是mma和ba的组合。[0040]基于共聚物的重量,共聚物优选还包含0.1至5重量%的酸单体如羧酸单体、磷酸单体或含硫酸单体的结构单元。羧酸单体的实例包括丙烯酸(aa)、甲基丙烯酸(maa)和衣康酸(ia)及其盐。[0041]合适的磷酸单体包括醇的膦酸酯和磷酸二氢酯,其中醇含有可聚合的乙烯基或烯基或被可聚合的乙烯基或烯基取代。优选的磷酸二氢酯是丙烯酸羟烷基酯或甲基丙烯酸羟烷基酯的磷酸酯,包括甲基丙烯酸磷酸乙酯(pem)和甲基丙烯酸磷酸丙酯。[0042]合适的硫酸单体的示例包括甲基丙烯酸乙磺酸酯、甲基丙烯酸丙磺酸酯、苯乙烯磺酸、乙烯基磺酸和2-丙烯酰胺基-2-甲基丙磺酸(amps)及其盐。[0043]优选地,该共聚物颗粒包含mma、ba、maa和式i的硅氧烷-丙烯酸酯单体的结构单元。[0044]在一个方面,ba的结构单元与mma的结构单元的重量比在45∶55至55∶45的范围内;在另一方面,总丙烯酸酯单体(优选地ba和mma)的结构单元与酸单体(优选地maa)的结构单元的重量比在99.95∶0.05,更优选地99.5∶0.5至97∶3,更优选地至98∶2的范围内。[0045]式i的硅氧烷-丙烯酸酯单体的结构单元的优选范围依赖于应用。对于家庭和个人护理应用,诸如化妆品、毛发护理和皮肤护理,基于共聚物颗粒的重量计,共聚物颗粒中式i单体的结构单元的重量百分比优选在20重量%、更优选地30重量%、并且最优选地45重量%至55重量%的范围内。对于涂层应用,基于共聚物颗粒的重量计,优选的重量百分比在2重量%,更优选地3重量%至20重量%,至15重量%,并且最优选地至10重量%的范围内。[0046]式i的单体的实例包括:[0047][0048][0049]式ii的非离子表面活性剂优选地包含支链烷基基团;n优选地在0至5范围内;并且p优选地在3至16范围内。合适的商业非离子表面活性剂的示例包括tergitoltm 15-s-9非离子表面活性剂(15-s-9;陶氏化学公司或其附属公司的商标),tergitol tmn-3非离子表面活性剂(tmn-3)、tergitol tmn-6非离子表面活性剂(tmn-6)、tergitol tmn-10非离子表面活性剂(tmn-10)、ecosurftm eh-6非离子表面活性剂(eh-6;陶氏化学公司或其附属公司的商标)。这些表面活性剂的结构如下所示:[0050][0051][0052]式ii的非离子表面活性剂的浓度基于单体的重量计优选地在1重量%至3重量%的范围内。[0053]式iii的阴离子表面活性剂优选地是直链c10-c14烷基硫酸盐,其中m为0。优选的阴离子表面活性剂是月桂基硫酸钠(sls)。式iii的阴离子表面活性剂的浓度基于单体的重量计优选地在1重量%至3重量%的范围内;阴离子表面活性剂与非离子表面活性剂的重量比优选地在1∶2至2∶1的范围内。[0054]组合物优选地包含小于1000ppm的凝结物(凝胶),以及优选地小于100ppm的残留单体。[0055]一种用于制备丙烯酸酯-硅氧烷共聚物颗粒的水性分散体的方法,该方法包括以下步骤:[0056]1)将水性单体乳液的第一部分添加到含有水、阴离子表面活性剂和任选地非离子表面活性剂的容器中,其中在60℃、更优选地80℃、至95℃范围内的温度下搅拌并控制容器的内容物;[0057]2)将第一部分的引发剂添加到容器中,以随着时间的推移形成种子共聚物颗粒的水性分散体;然后[0058]3)将第二部分的单体乳液和第二部分的引发剂逐渐添加到容器中;然后[0059]4)将容器内容物的温度保持在60℃、更优选地80℃至95℃范围内足够长的时间以实现单体基本上完全转化为包含单体的结构单元的共聚物颗粒。[0060]优选地,在步骤4)之后,将氧化还原引发剂包添加至容器;在步骤4)之后,还优选将水性分散体中和到6.5至7.5范围内的ph。在步骤4)之后更优选地添加氧化还原引发剂包,然后添加中和剂。[0061]令人惊讶地发现,将式i的高水平的硅氧烷-丙烯酸酯单体有效掺入到硅氧烷-丙烯酸酯共聚物中,可以通过本发明的方法实现,而无需大体上形成凝结物(凝胶),如通过重量分析测定,以及大直径颗粒(即,如通过本文所述的单个颗粒光学感测所确定,粒径>1μm且<40μm的颗粒)。[0062]粒度测定方法(particle sizing method)[0063]使用malvem zetasizer nano zs90测量粒度,该malvem zetasizer nano zs90使用动态光散射(dls)、使用zetasizer软件版本7.11以90°的散射角测量z均粒度(dz)。使用milliq水(在25℃下18.2mω.cm)的水性溶液稀释样品分散体的液滴以实现在200-400千计数/秒(kcp)范围内的颗粒计数。使用仪器的粒度测定方法进行粒度测量,并且通过软件计算dz。dz还称为基于强度的谐波平均粒度并且表达如下;[0064][0065]在此,si为来自具有直径di的颗粒i的散射强度,详细的dz计算在iso 22412:2017(粒度分析-动态光散射(dls))中有所描述。[0066]通过accusizer测定悬浮聚合物水平[0067]使用accusizer 7000aps单颗粒光学传感器仪器(particle sizing systems,pss,an entegris company,port richey,fl)测量共聚物颗粒分散体中的悬浮聚合物的量。在milliq水中按质量计将共聚物颗粒分散体稀释1000倍,然后注入仪器的样品室中。实验方法应用注射样品的两级稀释,在预稀释室中的第一稀释度为21.6,并且在仪器的第二级稀释区域中的第二稀释度为78.4。在完成数据收集之后,用milliq水冲洗样品室,直到观察到小于200计数每毫升的基线阈值。设置采样方法以测量大约100000总计数,并且测量的粒径>1μm的颗粒被定义为悬浮聚合物。样品以一式两份运行,并且数据呈现为平均值。采集数据并使用pss软件(版本2.3.1.6)处理。[0068]实施例1-使用sls和15-s-9非离子表面活性剂的混合物制备杂化共聚物颗粒的水性分散体[0069]将去离子水(150.0g)、polystep b-5-n月桂基硫酸钠(sls,3.0g,28.0%水溶液)和15-s-9(3.0g)添加到配备冷凝器、顶置式搅拌器和热电偶的500ml 4颈圆底烧瓶中。将反应器的内容物在250rpm下搅拌并在n2下加热至88℃。在单独的容器中,含有去离子水(180.0g)、sls(14.1g,28.0%水溶液)、15-s-9(3.0g)、ba(73.5g)、mma(73.5g)、maa(3.0g)、md′m-alma(150.0g)、正十二烷基硫醇(n-ddm,0.15g)、氢氧化铵溶液(2.8g,水中28%活性物质)和乙酸钠(0.9g)的单体乳液(me)使用顶置混合器制备,然后用手持式均质器(tissue tearor,model 985370,biospec products inc.)处理1min,以产生通过光学显微镜测定的平均液滴大小为约2μm至15μm的me。将一部分的me(20.0g)添加到反应器中并进行漂洗(5.0g的水),之后添加过硫酸铵(aps,0.09g)并进行漂洗(2.0g的水)。将其余的me和aps溶液(0.32g,在24.0g水中)在87℃至88℃的温度下在120min内同时进料到反应器中。在完成进料后,然后将反应器在87℃至88℃再保持30min。然后将反应器冷却至60℃,随后将单独的溶液(i)luperox tah 85叔戊基过氧化氢(t-ahp,0.29g,水中85重量%活性物质)、sls(0.06g,水中28%活性物质)和去离子水(3.0g),以及(ii)异抗坏血酸(iaa,0.15g)、versenetm edta(edta,dow或其附属公司的商标;0.3g,水中1%活性物质),和硫酸铁(ii)溶液(2.1g,水中0.15%活性物质)添加到反应器中。然后将反应器冷却至室温,然后滴加氢氧化铵溶液(水中28%活性物质)以将ph调节至~7.0。水性分散体依次通过孔径为840μm、150μm和40μm的不锈钢筛网过滤。最终的水性颗粒分散体具有:43.0%的固体,如通过dls测定的103nm的z均粒度,0.11重量%的最终聚合物凝结物(凝胶)水平(基于单体;每个目尺寸上收集的凝胶总和),和通过accusizer表征测定的0.43重量%的悬浮聚合物(基于单体)。样品中的残留md′m-alma的水平如通过uhplc测定为<30ppm。[0070]实施例2-使用sls和tmn-6非离子表面活性剂的混合物制备杂化共聚物颗粒的水性分散体[0071]重复实施例1,除了500ml的4颈圆底烧瓶和me中的15-s-9非离子表面活性剂被相等质量的tmn-6非离子表面活性剂替换。最终的水性颗粒分散体具有:42.8%的固体,如通过dls测定的100nm的z均粒度,0.12重量%的最终聚合物凝胶水平(基于单体;每个目尺寸上收集的凝胶总和),和通过accusizer表征测定的1.75重量%的悬浮聚合物(基于单体)。样品中的残留md′m-alma的水平如通过uhplc测定为<30ppm。[0072]实施例3-使用sls和tmn-10非离子表面活性剂的混合物制备杂化共聚物颗粒的水性分散体[0073]重复实施例1,除了500ml的4颈圆底烧瓶和me中的15-s-9非离子表面活性剂被相等质量的tmn-10非离子表面活性剂替换。最终的水性颗粒分散体具有:42.7%的固体,如通过dls测定的115nm的z均粒度,0.18重量%的最终聚合物凝胶水平(基于单体;每个目尺寸上收集的凝胶总和),和通过accusizer表征测定的1.01重量%的悬浮聚合物(基于单体)。样品中的残留md′m-alma的水平如通过uhplc测定为<30ppm。[0074]实施例4-使用sls和eh-6非离子表面活性剂的混合物制备杂化共聚物颗粒的水性分散体[0075]重复实施例1,除了500ml的4颈圆底烧瓶和me中的15-s-9非离子表面活性剂被相等质量的eh-6非离子表面活性剂替换。最终的水性颗粒分散体具有:42.5%的固体,如通过dls测定的103nm的z均粒度,0.18重量%的最终聚合物凝胶水平(基于单体;每个目尺寸上收集的凝胶总和),和通过accusizer表征测定的1.75重量%的悬浮聚合物(基于单体)。样品中的残留md′m-alma的水平如通过uhplc测定为<30ppm。[0076]比较例1一使用sls制备杂化共聚物颗粒的水性分散体[0077]重复实施例1,不同之处在于将仅sls添加至500ml 4颈圆底烧瓶(13.36g,基于单体为1.29重量%)和me(24.45g,基于单体为2.36重量%)两者中。最终的水性共聚物颗粒分散体具有:37.8%的固体,如通过dls测定的78nm的z均粒度,2.50重量%的最终聚合物凝胶水平(基于单体;每个目尺寸上收集的凝胶总和),和通过accusizer表征测定的1.60重量%的悬浮聚合物(基于单体)。样品中的残留md′‑alma的水平如通过uhplc测定<2500ppm。[0078]比较例2-使用15-s-9非阴离子表面活性剂制备杂化共聚物颗粒的水性分散体[0079]重复实施例1,不同之处在于将仅15-s-9添加至500ml 4颈圆底烧瓶(6.00g,基于单体为2.00重量%)和me(17.1g,基于单体为5.70重量%)两者中。共聚物颗粒分散体在大约100分钟内不可逆地在进程内凝胶化在me进料中。(46.2%理论固体;19.8%实际。)[0080]比较例3-通过xiao方法制备杂化共聚物颗粒的水性分散体[0081]重现如xiao,j.等人所述的制备杂化颗粒水性分散体的方法(prog.org.coatings 2018,116,1-6)。使用配备冷凝器、顶置式搅拌器和热电偶的500ml、4颈圆底烧瓶进行合成。将去离子水(19.0g)和sls(1.43g,28.0%水溶液)、tritontm x-100聚乙二醇叔辛基苯醚(dow或其附属公司的商标,0.80g)和碳酸氢钠(nahco3;0.40g)添加到烧瓶中。将反应器的内容物在100rpm下搅拌并在n2下加热至60℃。在单独容器中,含有去离子水(48.5g)、sls(2.14g,28.0%水溶液)、triton x-100(1.20g)、ba(ba;44.8g)、mma(42.3g)、苯乙烯(10.1g)和aa(1.9g)的me使用顶置式混合器制备。将一部分me(15.1g)添加到反应器中,然后添加在去离子水(10.0g)中的aps(0.13g),并在10min内将反应器温度升高到80℃。其余的me和aps溶液(0.27g,在20.0g水中)分别在4.5h和5h内在80℃至81℃的温度下同时进料到反应器中(即aps进料在me进料完成后持续30min)。在进料的3h标记处,将md′m alma添加到反应器(10.0g)。[0082]在完成aps进料后,然后将反应器在80℃下再保持30min。然后将反应器冷却至室温并滴加氢氧化铵溶液(水中28%活性物质)以将ph升高至~8.5。水性分散体依次通过孔径为150μm和40μm的不锈钢筛网过滤。最终的水性颗粒分散体具有:44.3%(理论=53.0%)的固体,如通过dls测定的135nm的z均粒度,0.80重量%的最终聚合物凝胶水平(基于单体;每个目尺寸上收集的凝胶总和),和通过accusizer表征测定的2.69重量%的悬浮液聚合物(基于单体)。血清相中的残留md′m-alma水平如通过uhplc测定为13,700ppm。[0083]比较例4-通过zhang方法制备杂化共聚物颗粒的水性分散体[0084]重现如zhang,b.等人(appl.surf.sci.2007,254,452-458)所述的制备杂化颗粒水性分散体的方法。将去离子水(60.0g)、十二烷基苯磺酸钠(0.30g)和span 20山梨糖醇单月桂酸酯(0.50g)添加到配备冷凝器、顶置式搅拌器和热电偶的100ml玻璃反应器中。将反应器内容物在100rpm下搅拌,加热至80℃,并用n2喷射30min。在单独的容器中,制备由mma(12.0g)、ba(12.0g)和md′m-alma(1.2g)组成的单体混合物。单体混合物和aps溶液(0.05g,在10.0g水中)在80℃至81℃的温度下在120min内同时进料到反应器中。在完成进料后,然后将反应器在80℃至81℃再保持6小时。然后将反应器冷却至室温,然后滴加氢氧化铵溶液(水中28%活性物质)以将ph升高至~7.0。最终的水性颗粒分散体具有:22.8%(理论=27.1%)的固体,如通过dls测定的64nm的z均粒度,1.97重量%的最终聚合物凝胶水平(基于单体;每个目尺寸上收集的凝胶总和),和通过accusizer表征测定的0.66重量%的悬浮聚合物(基于单体)。[0085]血清相中的残留md′m-alma水平如通过uhplc测定为13,700ppm。[0086]表1示出了添加到单体乳液(me)和/或釜的表面活性剂类型和对应质量(基于单体);未反应的残留的硅氧烷-丙烯酸酯单体的量(最终md′m-alma);形成的具有直径>1μm和<40μm的悬浮共聚物颗粒(ppm susp聚合物)的浓度(基于单体);形成的凝胶的浓度(基于单体)(ppm凝胶);以及表示为基于单体的重量百分比的凝胶和悬浮共聚物颗粒的浓度的总和(%susp+凝胶)。nd表示在30ppm以上未检测到单体量。单体乳液(me)和釜中起始材料的百分比基于单体的重量。表格显示了在方法中使用非离子表面活性剂和阴离子表面活性剂两者的临界状态,以减少凝胶形成并改善硅氧烷丙烯酸酯单体md′m-alma的转化。[0087]表1-乳液聚合反应中的残留单体、悬浮聚合物和凝胶形成[0088][0089]数据表明,可以将高浓度的硅氧烷-丙烯酸酯单体掺入到具有相对低凝胶形成和低残留单体的共聚物颗粒中。









图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!




内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,发布内容不收取任何费用也不接任何广告!




免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

相关内容 查看全部