发布信息

一种固定翼无人机跟踪制导律设计方法及验证平台

作者:admin      2022-11-16 09:21:51     820



控制;调节装置的制造及其应用技术1.本发明属于无人机技术领域,具体涉及一种无人机跟踪制导律设计方法及验证平台。背景技术:2.近年来,随着无人机自主性的提高和侦察探测手段的发展,无人机广泛应用在日常生活和军事活动中。在任务应用阶段重点研究方向之一,对地面目标的自动跟踪问题受到广泛关注。与旋翼无人机相比,固定翼无人机具有飞行速度快、任务载荷大、滞空时间长等优点。与旋翼无人机能够稳定悬停不同,固定翼无人机需要保持一定的速度才能产生足够的升力以保证自身的安全飞行,固定翼无人机在跟踪地面目标时既需要保持安全飞行速度,又需要保持目标在可观测的视线角范围内,因此需要设计一种制导律来完成对地面目标的持续观测。目前固定翼无人机对地面目标的跟踪主要有定距跟踪和过顶跟踪两种跟踪形式,其中过顶跟踪虽然可以实现对目标更为全面的观测,但是当地面目标存在威胁时,采取过顶跟踪方式会使得无人机受到严重的威胁,无人机需要在目标上空固定高度上保持一定的安全距离来环绕目标飞行。3.由于地面目标移动的不确定性和无人机自身最小转弯半径的限制,对制导器的性能提出了更高的要求。传统的基于李雅普诺夫矢量场的制导方法收敛速度慢,跟踪精度低,在持续跟踪时存在较大的距离波动,无人机的姿态变化剧烈,会使得无人机耗费额外的能量,不利于对目标的持续跟踪,因此有必要设计一种高性能的制导方法。技术实现要素:4.为了克服现有技术的不足,本发明提供了一种固定翼无人机跟踪制导律设计方法及验证平台,利用无人机与地面目标跟踪圆之间的侧偏距和侧偏变化率产生的横向加速度指令来引导无人机快速收敛到指定的跟踪圆上,分析并证明了制导律的全局渐进稳定性。通过引入相对变量的概念对制导律进行修正,使得无人机能够快速跟踪移动目标。半物理仿真验证平台由制导控制系统、综合显示与控制系统、实时仿真系统、视景仿真系统和物理演示系统组成,可以有效验证存在通信时延和噪声干扰下所提出的制导方法的鲁棒性。本发明所提供的方法既可以有效提高跟踪效率,也为后续无人机的实际试飞验证奠定了坚实的理论基础。5.本发明解决其技术问题所采用的技术方案包括如下步骤:6.步骤1:建立无人机跟踪地面目标的运动学模型;7.步骤1-1:无人机在惯性系下三维位置为(x,y,h),飞行速度为vm,移动的航向角为ψm,航迹角为γm,侧向制导输入为u;在惯性系下的动力学模型为:[0008][0009]步骤1-2:地面目标在惯性系下位置为(xt,yt,0),移动速度为vt,移动航向角为ψt;地面目标在惯性系下的动力学模型为:[0010][0011]式中,ut表示地面目标的航向角变化率;[0012]则无人机与地面目标之间的相对水平距离ρ:[0013][0014]步骤1-3:假设无人机地面目标的移动速度vt小于无人机的飞行速度vm,无人机的高度和速度保持不变,无人机在固定二维平面上绕目标做圆周运动;无人机能获取到地面目标的状态信息;[0015]假设地面目标静止,无人机与地面目标之间的相对运动学模型为:[0016][0017]其中θ为无人机与地面目标之间的中心连线与水平轴x轴之间的夹角,逆时针为正方向,为无人机速度的径向与r矢量方向的切向的夹角,逆时针为正方向,ρd为指定的跟踪圆周半径;r为无人机与圆周轨道之间的距离,无人机位于圆周外为正;[0018]对相对运动学模型求导得:[0019][0020]无人机的状态方程变为2个,即r和且当无人机速度一定时,r、两者相互确定;当时间t→∞时,r→0即ρ→ρd,或π;时,无人机绕目标做顺时针转动,时,无人机绕目标做逆时针转动;[0021]步骤2:无人机跟踪移动目标的制导律和相对运动学模型;[0022]步骤2-1:无人机在稳定跟踪时,所需的制导输入为:[0023][0024]将理想位置的偏差信号r作为控制输入,形成控制闭环,制导律修改为:[0025][0026]式中,k1表示制导增益系数;[0027]引入位置速率偏差信号,增大系统的阻尼,减少系统的超调,制导律重写如下:[0028][0029]其中k》0表示增益,ξ》0为定值,表示阻尼,能够调节系统的变化过程;[0030]步骤2-2:无人机的相对动力学模型在制导律的作用下,其闭环形式为:[0031][0032]将带入闭环动力学系统中得到系统的稳定点为n=0,±1,±2,…,其中系统的初始状态为r0=ρ0-ρd,r0为无人机运动的起点与地面目标之间的初始水平距离,为无人机在起点处的速度与初始连线夹角,在坐标系中规定[0033]对稳定点进行分析:当r=0,无人机将绕目标做稳定的圆周运动;当r=0,无人机将飞入圆周内;当r=0,无人机将飞出圆周外,因此系统的稳定点为[0034]当制导增益k》0时,无人机的动力学模型在制导律的作用下是全局渐进稳定的,是闭环动力学系统的渐进稳定平衡点;[0035]步骤2-3:分两种情况讨论闭环系统的全局渐进稳定性:[0036]1)r》0,无人机在跟踪圆外飞行时,此时的系统闭环运动方程为:[0037][0038]选取一个李雅普诺夫候选方程为:[0039][0040]显然v≥0,对上述候选方程为:[0041][0042]将系统的闭环运动方程代入得到:[0043][0044]显然[0045]2)r≤0,无人机在跟踪圆上或跟踪圆内飞行,此时的系统闭环运动方程为:[0046][0047]此时的上述李雅普诺夫函数式(12)的导数为:[0048][0049]显然[0050]因此在制导律的作用下,系统是渐进稳定的。[0051]步骤2-3:当地面目标以速度vt在世界坐标系中沿航向角ψt移动时,需要对制导律进行改写和扩展,引入相对量的概念,相对运动学模型变为:[0052][0053]式中vr为无人机相对于地面目标的速度,为无人机相对于地面目标相对速度方向的径向与r矢量方向的切向的夹角,无人机的速度矢量分解为:[0054][0055]对式(18)两端进行标量分解为:[0056][0057]式中ψr为相对航向角,式两端同时对时间求取微分得:[0058][0059]整理得:[0060][0061]式(21)左端为切向加速度分量,右端为法向加速度分量,控制目标是使得无人机绕目标以相对速度绕目标做稳定的圆周运动,因此等式两端均为0,得到新的制导律:[0062][0063]式中:[0064]选取的李雅普诺夫函数为:[0065][0066]对上式两端求导得:[0067][0068]如上式所示,对匀速运动目标和静止目标的跟踪看成式(22)的特例,其稳定性证明方式相同;至此得到无人机跟踪移动目标的制导律和相对运动学模型;[0069]步骤3:制导律参数分析与控制律设计;[0070]步骤3-1:制导律参数分析与设计;[0071]系统运动的平衡点处做线性化分析,得到无人机的位置由(ρ,θ)所决定的,ψm表示无人机的速度方向,r表示无人机与跟踪圆周之间的偏差,是速度方向与当前圆弧路径切线的夹角;这三个夹角的数学关系为:[0072][0073]等式两边同时求导得:[0074][0075]因此无人机的横向加速度指令为:[0076][0077]由系统平衡点处的小角度假设知sinη≈η,因此:当时,有表示无人机以速度vm绕地面目标做半径为ρd的圆周运动所需的向心加速度,自此:[0078][0079]在都趋近于0的假设下,有与联立得到:[0080][0081]得到一个二阶系统的形式,系统的时间常数阻尼比令x1=r,所以:[0082][0083]对于式(30)所示的自治系统在平衡点处是渐进稳定的,令系统矩阵a的特征值为:由于k》0,所以系统的唯一平衡状态时渐进稳定的,即当t→∞,e→0;[0084]步骤3-2:控制律设计;[0085]制导律的输出u是直接与滚转角相联系的,通过使用协调转弯指令转化来计算滚转角指令;无人机在倾斜转弯情况下的受力为:得到制导律输出的滚转角指令为:[0086][0087]其中g为重力加速度,将制导律输出转化为无人机的滚转角指令,进行控制律的设计和实验;[0088]采用经典的pid控制器设计控制律,高度控制器的结构为:[0089][0090]式中的h、θ、q分别表示无人机的高度、俯仰角和俯仰角速率,hg为高度指令;δe表示升降舵,kh表示高度信号的比例增益系数,k∫h为高度信号的积分增益系数,表示高度速率的比例增益系数,kθ表示俯仰角的比例增益系数,k∫θ俯仰角的积分增益系数,kq表示阻尼系数;[0091]横侧向控制器结构为:[0092][0093]式中,δa表示副翼,δr表示方向舵,kφ表示滚转角信号的比例增益系数,φg表示给定的滚转角指令,φ表示滚转角,kp表示滚转阻尼系数,p表示滚转角速率,表示副翼信号的比例增益系数;[0094]速度控制器结构为:[0095]δt=kv(vg-v)+k∫v∫(vg-v)dtꢀꢀꢀꢀ(34)[0096]式中,δt表示油门,kv表示速度信号的比例增益系数,k∫v表示速度信号的积分增益系数,vg表示速度指令;[0097]优选地,所述系统的阻尼比取值在0.5~0.8之间。[0098]一种用于固定翼无人机跟踪制导律验证的半物理仿真验证平台,包括:制导控制系统、综合显示与控制系统、实时仿真系统、视景仿真系统和物理演示系统;[0099]所述制导控制系统用于制导指令和控制指令解算;所述实时仿真系统用于全量非线性六自由度飞机模型解算,具有实时性;所述综合显示与控制系统用于监控无人机的飞行姿态,控制实验的开始和停止,并进行simulink模型下载;所述视景仿真系统用于显示无人机和地面车辆的运动特性;所述物理演示系统能够直观地显示无人机的飞行姿态;[0100]所述半物理仿真验证平台的硬件包括自驾仪、上位机、下位机、三轴电动转台和模型飞机;所述自驾仪运行制导控制系统,每间隔q秒解算一次制导和控制指令;所述上位机为pc机,运行综合显示与控制系统和视景仿真系统,接收来自下位机的飞行数据,监控飞机的运行状态,驱动视景仿真更新,并将无人机的六自由度simulink模型通过xpc-target技术下载进入下位机中;所述下位机为工控机,运行实时仿真系统,每间隔q秒解算一次飞机的六自由度全量非线性模型;所述三轴电动转台为三自由度模拟支撑装置,能够模拟飞机的俯仰、偏航、滚转运动;所述模型飞机为epo材质的缩比模型,由自驾仪输出的pwm波驱动相应舵面,组成了物理演示系统。[0101]所述半物理仿真验证平台的工作原理如下:[0102](1)在上位机的综合显示与控制软件中,通过udp通信方式将simulink模型下载进入下位机中;[0103](2)在综合显示与控制软件中输入指令启动下位机开始工作,下位机通过rs232串口将飞机的状态信息发送到自驾仪中与地面站发送的控制指令综合进行制导和控制律解算,自驾仪将解算得到的舵面偏转控制信号通过rs232串口发送到下位机中驱动飞机运动,同时,自驾仪将舵面控制指令转化成pwm波驱动舵机偏转,从而带动相应舵面偏转;[0104](3)下位机中的模型飞机被驱动后,通过udp通信方式将无人机的实时状态和得到的目标信息发送到视景仿真系统中,驱动视景更新,方便观察无人机和目标的运动学和动力学特性。[0105](4)下位机将飞机的状态信息通过rs232串口发送到电动转台中,电动转台带动飞机转动相应的姿态角;[0106](5)通过半物理仿真验证平台,验证存在通信时延和噪声干扰条件下制导律的有效性和鲁棒性。[0107]优选地,所述自驾仪为dream-buider01型飞控,基于stm32f4开发;所述工控机为研华科技的ipc-610h。[0108]优选地,所述q=20。[0109]本发明的有益效果如下:[0110]本发明制导方法从运动关系出发,跟踪速度快,跟踪精度高,可以满足实时性要求;在制导律的作用下,闭环跟踪系统是全局渐进稳定的,无人机可以在任意位置、任意航向收敛到期望的跟踪圆上;制导方法参数简洁,在平衡点附近线性化分析后,为参数调整提供了依据;验证平台成本低,实施简单,可以模拟实际飞行环境,有效验证制导方法的鲁棒性,为后续的实际试飞验证提供了理论依据。附图说明[0111]图1为本发明制导律的算法流程图。[0112]图2为本发明实施例的一种半物理仿真平台系统框架图。[0113]图3为本发明实施例的无人机跟踪地面静止目标示意图。[0114]图4为本发明实施例的无人机跟踪地面移动目标示意图。[0115]图5为本发明实施例的无人机倾斜转弯受力示意图。[0116]图6为本发明实施例的f16等效缩比飞机模型。[0117]图7为本发明实施例所提供的制导方法与lvfg对地面静止目标跟踪的数字仿真对比结果,(a)为两种制导方法跟踪地面静止目标的水平运动轨迹,(b)为无人机相对地面目标的水平距离,(c)为两种制导方法产生的制导指令与状态响应。[0118]图8为本发明实施例所提供的制导方法与lvfg对地面匀速运动目标跟踪的数字仿真对比结果,(a)为两种制导方法跟踪地面直线目标的水平运动轨迹,(b)为无人机相对地面目标的水平距离,(c)为两种制导方法产生的制导指令与状态响应。[0119]图9为本发明实施例的半物理验证平台系统硬件连接的通信原理图。[0120]图10为本发明实施例的半物理验证平台的实际硬件图。[0121]图11为本发明实施例的制导方法对地面匀速运动目标跟踪的半物理仿真结果,(a)为ftgl方法跟踪地面直线目标的水平运动轨迹,(b)为无人机相对地面目标的水平距离,(c)为ftgl制导方法产生的制导指令与状态响应。[0122]图12为本发明实施例的制导方法对地面变速运动目标跟踪的半物理仿真结果,(a)为ftgl方法跟踪地面变速目标的水平运动轨迹,(b)为无人机相对地面目标的水平距离,(c)为ftgl制导方法产生的制导指令与状态响应。[0123]图13为本发明实施例的真实汽车的运动数据图,(a)为汽车的运动轨迹,(b)为汽车的移动速度。[0124]图14为本发明实施例的制导方法对地面真实运动目标跟踪的半物理仿真结果,(a)为ftgl方法跟踪地面直线目标的水平运动轨迹,(b)为无人机相对地面目标的水平距离,(c)为ftgl制导方法产生的制导指令与状态响应。具体实施方式[0125]下面结合附图和实施例对本发明进一步说明。[0126]如图1所示,本发明的目的在于克服传统的李雅普诺夫矢量场制导(lvfg)方法存在的问题—收敛速度慢,跟踪精度低,在建立无人机和地面目标的二维运动模型的基础上,提出了一种基于侧偏距和侧偏速率的制导方法(ftgl),可以实现对地面目标的快速稳定跟踪。本发明的目的二在于针对实际试飞验证难度大,成本高,设计了一种半物理仿真验证方法,可以模拟实际飞行过程中面临的诸多问题,为实际试飞验证奠定坚实的理论基础。[0127]1、建立无人机跟踪地面目标的运动学模型,分析整个跟踪系统;[0128]无人机在惯性系下三维位置为(x,y,h),飞行速度为vm,移动的航向角为ψm,航迹角为γm,侧向制导输入为u。在惯性系下的动力学模型为:[0129][0130]地面目标在惯性系下位置为(xt,yt,0),移动速度为vt,移动航向角为ψt。在惯性系下的动力学模型为:[0131][0132]则有无人机与目标之间的相对水平距离ρ:[0133][0134]为了方便推导,假设无人机在无风条件下飞行,配备有自动驾驶仪,具有高度保持、速度保持、姿态保持等功能。控制内回路能够很好地响应外环制导指令,且地面目标的移动速度vt小于无人机的飞行速度vm。无人机的高度和速度保持不变,无人机在固定二维平面上绕目标做圆周运动。目标在固定平面上静止或运动,无人机可以获取到地面目标的状态信息。[0135]假设目标静止,无人机与地面目标之间的相对运动学模型如图3所示为:[0136][0137]其中θ为无人机与地面目标之间的中心连线与水平轴(x轴)之间的夹角,逆时针为正方向,为无人机速度方向的径向与r矢量方向的切向的夹角,ρd为指定的跟踪圆周半径,r为无人机与圆周轨道之间的距离,无人机位于圆周外为正。[0138]对相对运动学模型求导得:[0139][0140]无人机的状态方程变为2个,即r和且当无人机速度一定时,r、两者相互确定,目的是设计制导输入u,通过改变uav飞行速度的方向即航迹方位角来完成对r的控制。当t→∞时,r→0即ρ→ρd,或π,时,无人机绕目标做顺时针转动,时,无人机绕目标做逆时针转动。本发明只考虑顺时针转动情况。[0141]2、提出侧向制导方法,分析并证明制导方法的全局渐进稳定性[0142]无人机在稳定跟踪时,所需的制导输入为:[0143][0144]这是一种开环控制,无法保证无人机在跟踪时收敛。于是将理想位置的偏差信号r作为控制输入,形成控制闭环,制导律修改为:[0145][0146]r的引入虽然形成了闭环控制,减少了跟踪误差,但容易引起系统的超调,不利于跟踪目标。于是,本发明将引入位置速率偏差信号,来增大系统的阻尼,减少系统的超调,制导律重写如下:[0147][0148]其中k》0表示增益,ξ》0为定值,表示阻尼,可以调节系统的变化过程。无人机的相对动力学模型在制导律的作用下,其闭环形式为:[0149][0150]由第一节的描述知,将带入闭环动力学系统中得到系统的稳定点为n=0,±1,±2,…,其中系统的初始状态为r0=ρ0-ρd,r0为无人机运动的起点与地面目标之间的初始水平距离,为无人机在起点处的速度与初始连线夹角,为了方便,在坐标系中规定下面对稳定点进行分析:当r=0,无人机将绕目标做稳定的圆周运动;当r=0,无人机将飞入圆周内;当r=0,无人机将飞出圆周外,因此系统的稳定点为[0151]当制导增益k》0时,无人机的动力学模型在制导律的作用下是全局渐进稳定的,是闭环动力学系统的渐进稳定平衡点。[0152]下面分两种情况讨论闭环系统的全局渐进稳定性:[0153]1)r》0,无人机在跟踪圆外飞行时,此时的系统闭环运动方程为:[0154][0155]选取一个李雅普诺夫候选方程为:[0156][0157]显然v≥0,对上述候选方程为:[0158][0159]将系统的闭环运动方程代入得到:[0160][0161]显然[0162]2)r≤0,无人机在跟踪圆上或跟踪圆内飞行,此时的系统闭环运动方程为:[0163][0164]此时的上述李雅普诺夫函数的导数为:[0165][0166]显然因此在制导律的作用下,系统是渐进稳定的。[0167]当地面目标以速度vt在世界坐标系中沿航向角ψt移动时,采用上述制导律虽然仍可实现对移动目标的跟踪,但是跟踪效果会变差,需要对制导律进行改写和扩展,首先引入相对量的概念,如图4所示,相对运动学模型为:[0168][0169]式中vr为无人机相对于地面目标的速度,为无人机相对于地面目标相对速度方向的径向与r矢量方向的切向的夹角,无人机的速度矢量分解为:[0170][0171]对式两端进行标量分解为:[0172][0173]式中ψr为相对航向角,式两端同时对时间求取微分得:[0174][0175]整理得:[0176][0177]式(21)左端为切向加速度分量,右端为法向加速度分量,控制目标是使得无人机绕目标以相对速度绕目标做稳定的圆周运动,因此等式两端均为0,得到新的制导律:[0178][0179]式中:[0180]选取的李雅普诺夫函数为[0181][0182]对上式两端求导得:[0183][0184]如上式所示,对匀速运动目标和静止目标的跟踪可看成(22)的特例,其稳定性证明推导方式与前面相同。至此可以得到无人机跟踪移动目标的制导律和相对运动学模型。[0185]3、制导律参数分析与控制律设计[0186]1)制导律参数分析与设计[0187]系统运动的平衡点处做线性化分析。可以看到无人机的位置由(ρ,θ)所决定的,ψm表示无人机的速度方向,r表示无人机与跟踪圆周之间的偏差,是速度方向与当前圆弧路径切线的夹角。这三个夹角的数学关系为:[0188][0189]等式两边同时求导得:[0190][0191]因此无人机的横向加速度指令为:[0192][0193]由系统平衡点处的小角度假设知sinη≈η,因此:当时,有表示无人机以速度vm绕地面目标做半径为ρd的圆周运动所需的向心加速度,自此:[0194][0195]在都趋近于0的假设下,有与联立得到:[0196][0197]可以得到一个二阶系统的形式,系统的时间常数阻尼比令x1=r,所以:[0198][0199]对于该式所示的自治系统在平衡点处是渐进稳定的。令系统矩阵a的特征值为:由于k》0,所以系统的唯一平衡状态时渐进稳定的,即当t→∞,e→0。[0200]同时,在工程上取系统的阻尼比为0.5~0.8为最佳,在进行参数调节时注意k和ξ的选取,以保证系统能够快速跟踪目标。[0201]制导律的输出u是直接与滚转角相联系的,可以通过使用协调转弯指令转化来计算滚转角指令。根据无人机的协调转弯运动学如图5所示:无人机在倾斜转弯情况下的受力为:得到制导律输出的滚转角指令为:[0202][0203]其中g为重力加速度,至此将制导律输出转化为无人机的滚转角指令,方便展开控制律的设计和实验。[0204]选取的无人机模型为等效缩比的f16飞机模型,如图6所示,其基本参数为飞机重量为3.93kg,翼展0.8m,机长1.5m,飞行包线为迎角:-5°≤α≤20°,侧滑角:-15°≤β≤15°,高度:0m≤h≤6000m,速度:20m/s≤v≤60m/s。飞机在高度h=500m,速度v=33m/s下的配平状态为:配平迎角αtrim=2.38°,升降舵δel=0.535°,推力δt=7.63n。将在这组配平状态下展开控制律的设计。[0205]采用经典的pid控制器设计控制律,设计简单,鲁棒性强。高度控制器的结构为:[0206][0207]式中的h,θ,q分别表示无人机的高度、俯仰角和俯仰角速率,hg为高度指令。[0208]横侧向控制器结构为:[0209][0210]速度控制器结构为:[0211]δt=kv(vg-v)+k∫v∫(vg-v)dtꢀꢀꢀꢀ(34)[0212]4、制导律的应用和半物理验证平台搭建[0213]为了验证本发明所提出的制导方法的有效性,首先进行数字仿真。在matlab/simulink中搭建相应的飞机模型,无人机的飞行速度vc=33m/s,无人机的飞行高度为hc=500m,跟踪半径ρd=300m,滚转角指令输入限制为[-40°ꢀ40°]。阻尼比ξ=0.707,制导增益k=1。[0214]1)跟踪静止目标[0215]无人机的初始位置设置为(0,0,500)m,初始航向角ψm=0°,地面目标的初始位置为(800,800,0)m,仿真时间为200s。图7为无人机分别采用lvfg和ftgl制导跟踪地面静止目标,仿真结果表明,在跟踪静止目标时两种制导方法的跟踪效果接近,ftgl的收敛速度较快。[0216]2)跟踪匀速运动目标[0217]无人机的初始位置设置为(0,0,500)m,初始航向角ψm=0°,地面目标的初始位置为(400,400,0)m,仿真时间为300s。图8为无人机跟踪地面匀速目标的轨迹和相对距离,结果表明与lvfg相比,采用ftgl制导方法的无人机能够实现对地面运动目标的快速稳定跟踪,收敛半径波动小。[0218]3)半物理仿真验证平台[0219]如图2、图9和图10所示,本发明实施例还提供了一种半物理仿真验证平台,包括:制导控制系统、综合显示与控制系统、实时仿真系统、视景仿真系统和物理演示系统。制导控制系统用于制导指令和控制指令解算;实时仿真系统用于全量非线性六自由度飞机模型解算,具有严格的实时性;综合显示与控制系统用于监控无人机的飞行姿态,控制实验的开始和停止,并进行simulink模型下载;视景仿真系统用于显示无人机和地面车辆的运动特性;物理演示系统可以直观地显示无人机的飞行姿态。半物理仿真验证平台所需的硬件包括自驾仪、上位机、工控机(下位机)、三轴电动转台、f16模型飞机。自驾仪为dream-buider01型飞控,基于stm32f4开发,运行制导和控制系统,每20ms解算一次制导和控制指令;上位机为惠普pc机,运行综合显示与控制系统和视景仿真系统,接收来自下位机的飞行数据,监控飞机的运行状态,驱动视景仿真更新,并将无人机的六自由度simulink模型通过xpc-target技术下载进入工控机中;工控机为研华科技的ipc-610h,运行实时仿真系统,每20ms解算一次飞机的六自由度全量非线性模型;三轴电动转台为自制的三自由度模拟支撑装置,可以模拟飞机的俯仰、偏航、滚转运动,f16模型飞机为epo材质的缩比模型,由自驾仪输出的pwm波驱动相应舵面,组成了物理演示系统。[0220]半实物仿真系统由综合显示与控制软件、自动驾驶仪、实时仿真计算机、三轴电动转台、飞行视景仿真系统、小型f16航模飞机组成。[0221](1)控制对象[0222]选取的无人机模型为经典的低精度的f16等效缩比模型,共有3个舵面和一个油门控制通道,升降舵用于控制飞机的俯仰运动,副翼用于控制飞机的滚转运动,方向舵用于控制飞机的偏航运动,油门用于控制飞机的速度通道。飞机的气动数据采用美国宇航局艾姆斯和兰利研究中心针对f-16缩比飞机进行低速静态和动态风洞实验得到的气动数据,在此数据的基础上搭建六自由度全量非线性飞机模型。[0223](2)dreambuilder-01型自驾仪[0224]dreambuilder01型自驾仪集成了cortex-m4的32位cpu,搭载三轴加速度计、三轴陀螺仪、三轴磁力计、gps定位芯片、12路pwm输出、2个rs232输出,每20ms解算一次制导和控制指令。针对所设计好的控制律和制导律,在keil软件中编写面向飞控板的程序代码,并通过仿真器下载到飞控控制板卡中去。[0225](3)xpc实时仿真计算机[0226]实时仿真计算机(下位机)由研华科技生产,具备严格实时仿真要求,运行全量非线性六自由度飞机模型。在上位机完成simulink模型搭建后,以xpc-target的方式通过网卡下载进入工控机中,通过xpc实时系统每20ms运行解算一次飞机模型。[0227](4)综合显示与控制计算机[0228]综合显示与控制软件运行在惠普pc机(上位机)中,可以将simulink模型下载进入下位机中,发送控制指令到飞控板中,同时也可以通过udp通信的方式接收飞机的状态,驱动视景仿真子系统。[0229](5)执行机构[0230]dreambuiler01将控制律的解算输出作为舵机的数字输入信号,通过pwm波驱动方式直接输送至安装在被控飞机上的电动数字舵机,舵机在该指令后通过连杆机构驱动飞机的舵面偏转,各个舵面功能和极性配置按照被控飞机的舵面布置设定。[0231](6)三自由度电动转台[0232]三自由度电动转台具有三轴的三个自由度,纵向与横/航向运动自由度解耦,飞机模型始终绕体轴滚转,符合典型飞行模态和常规机动飞行姿态响应规律,可以模拟飞机的俯仰、偏航、滚转运动。[0233]假设目标的位置、航向角、速度是已知的。整套系统的工作原理如下:[0234](1)在上位机的综合显示与控制软件中,通过udp通信方式将simulink模型下载进入实时仿真计算机(下位机)中。[0235](2)在综合显示与控制软件中输入指令启动下位机开始工作,下位机通过rs232串口将飞机的状态信息发送到自驾仪中与地面站发送的控制指令综合进行制导和控制律解算,自驾仪将解算得到的舵面偏转控制信号通过rs232串口发送到下位机中驱动飞机运动,同时,自驾仪将舵面控制指令转化成pwm波驱动舵机偏转,从而带动相应舵面偏转。[0236](3)下位机中的飞机模型被驱动后,通过udp通信方式将无人机的实时状态和得到的目标信息发送到视景仿真系统中,驱动视景更新,方便观察无人机和目标的运动学和动力学特性。[0237](4)下位机将飞机的状态信息通过rs232串口发送到电动转台中,电动转台带动飞机转动相应的姿态角。[0238]通过上述半实物平台,可以验证存在通信时延和噪声干扰条件下制导律的有效性和鲁棒性。[0239]4)半物理仿真验证过程;[0240](1)跟踪匀速目标[0241]如图11所示,无人机的初始位置为(0,0,500)m,地面目标的初始位置为(600,600,0)m,初始航向角ψt=45°,地面目标的速度和位置信息如表1所示:[0242]表1地面目标运动信息[0243][0244]自驾仪中的三轴陀螺仪的量测噪声均值为0deg/s,方差为5deg2/s2的高斯白噪声。仿真结果如图所示,仿真结果表明在模拟的噪声条件下,采用该制导律的无人机仍可实现对地面目标的稳定跟踪。[0245](2)变速目标跟踪[0246]当地面目标的速度和航向角发生剧烈变化时,无人机很容易丢失目标,为了验证在恶劣条件下制导律的有效性和鲁棒性,地面目标的速度信息如表2所示。[0247]表2地面目标移动信息[0248][0249]地面目标的初始位置为(300,300,0)m,无人机的初始位置设置为(0,0,500)m。自驾仪中的三轴陀螺仪的量测噪声均值仍为0deg/s,方差为5deg2/s2的高斯白噪声。仿真结果如图12所示,表明制导律具有很强的适应性和鲁棒性,在地面目标的速度和航向角剧烈变化条件下,所提出制导律仍可实现对地面目标的快速精确跟踪,除了在目标速度和航向切换阶段外有相对较大的跟踪误差外,其余时刻跟踪误差dr《20m,制导律是有效的。[0250](3)跟踪实际运动小车[0251]实际运动车辆的数据集是由法国瓦尔德马恩总部门委员会收集的真实数据。从这些实际数据中选择一组数据。这组数据的目标运动模态是比较典型的,从图13可以看出,地面车辆的运动是多种多样的,包括高速运动、低速运动和动-停-转运动,而且由于实际数据是在早高峰和晚高峰时段采集的,受交通拥堵和红绿灯的影响,汽车有时行驶缓慢,有时甚至会停下来。[0252]无人机和地面车辆的起点分别为(600,400,500)m和(1044,600,0)m。图14显示了无人机跟踪实际目标轨迹的结果。









图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!




内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,发布内容不收取任何费用也不接任何广告!




免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

相关内容 查看全部