发布信息

核壳结构的B掺杂C/SiO2多孔复合材料的制备方法及其应用 专利技术说明

作者:admin      2022-11-30 07:36:24     599



物理化学装置的制造及其应用技术核壳结构的b掺杂c/sio2多孔复合材料的制备方法及其应用技术领域1.本发明属于多孔复合材料合成领域,具体涉及核壳结构的b掺杂c/sio2多孔复合材料的制备方法及其应用。背景技术:2.随着现代化科技水平的提高,人们对化石原料的依赖性也越来越强。人们使用化石燃料改善了衣食住行,提高了生活水平,但不容小觑的是这些化石原料的燃烧同时伴随着大量的温室气体的排出,导致全球的气温升高、臭氧层的破坏、冰川融化导致海平面上升等环境问题。这些环境问题不仅仅影响了动植物的生存条件,而且还开始影响人们生活的政治、经济、农业、能源等各个领域。其中二氧化碳作为温室气体的主要组成成分之一,由于二氧化碳气体本身具有吸热和隔热的功能,它在大气中积累过多会形成一种无形的玻璃罩,使太阳辐射的热量无法向外层空间发散,最终会使地球表面变热。同时二氧化碳也是一种能源,它在人们的生产生活中也是十分重要的,在食品方面二氧化碳可用于制碱、制糖等;在工业生产方面二氧化碳可用于焊接技术,它可以阻止氧气与焊接点处高温熔融金属与氧气进行反应,防止金属被氧化;在消防方面可以制作灭火器,进行人工降雨,制作制冷剂等;不仅如此植物进行光合作用生成有机物和氧气也是需要二氧化碳的。为充分利用好二氧化碳的这些优点,改善温室效应,二氧化碳的吸附和回收利用技术就显得十分重要。与其他材料相比,多孔碳材料比表面积大,化学稳定性好,机械强度高,广泛应用于各个领域。根据以往的一些研究发现,碳质多孔碳材料在co2吸附方面表现出良好的吸附性能。3.多孔碳材料是指具有不同孔结构的碳材料,其孔径大小可以根据实际应用的要求进行调整,使其大小从纳米微孔到微米大孔不等,其中微孔(孔径<2nm)、介孔(孔径介于2~50nm之间)、大孔(孔径>50nm)。多孔碳材料具有碳材料的性质,如化学稳定性高、导电性好、价格低廉等。同时,由于孔结构的引入使其具有更大的表面积、可控的孔结构和可调的孔径等特点。多孔碳材料已广泛应用于气体分离、水净化、催化和光催化、储能等领域。4.c/sio2复合多孔材料可以分为两类,第一类是二氧化硅/传统碳复合材料,传统碳材料主要包括沉积碳、石墨以及热解碳等;第二类是二氧化硅/多孔碳复合材料,而多孔碳主要包括碳纳米纤维、碳纳米管以及石墨烯等。多孔c/sio2复合材料主要利用了二氧化硅可以促进多孔碳表面形成更多的孔,使多孔碳的比表面积增大,提升了多孔碳对气体分子的吸附能力,而且二氧化硅其本身又有着无毒性、低成本、化学惰性和热稳定性良好等特点,两者的复合材料具备两者所有的性质。但目前,c/sio2多孔复合材料制成的吸附剂对二氧化碳的吸附能力并不理想,还有很大的提升空间。通过掺杂原子对c/sio2多孔材料进行功能化,将赋予其新的功能,从而充分发挥其优势,为co2的绿色利用开辟了新道路。技术实现要素:5.针对现有技术的不足之处,本发明的目的在于提供核壳结构的b掺杂c/sio2多孔复合材料的制备方法及其应用。6.本发明的技术方案概述如下:7.核壳结构的b掺杂c/sio2多孔复合材料的制备方法,包括以下步骤:8.s1:将聚醚f127(peo106-ppo70-peo106)溶解于乙醇溶液中,加入间苯二酚,在25℃室温下搅拌后,再加入浓盐酸和硼酸三异丙酯,搅拌1h,再加入正硅酸四乙酯,继续搅拌后,逐滴加入甲醛,继续搅拌24h,得混合溶液;9.s2:将所得混合溶液转移至反应釜中,100℃恒温老化24h,再离心、洗涤至中性后,置于70℃干燥箱过夜烘干,得多孔复合材料半成品;10.s3:将多孔复合材料半成品研磨后放入管式炉中,以2℃/min的升温速率升至350℃,保温2h,继续以2℃/min的升温速率升至650℃,保温4h后,冷却至25℃室温,所获得的黑色粉末即为具有核壳结构的b掺杂c/sio2多孔复合材料。11.优选的是,所述乙醇溶液的体积浓度为50%。12.优选的是,所述聚醚f127、乙醇溶液、间苯二酚、浓盐酸、硼酸三异丙酯、正硅酸四乙酯、甲醛的用量比例为5.02g:40ml:3.3033g:(15-120)mmol: (495-1480)μl:6.75ml:6.02ml。13.所述的制备方法制出的核壳结构的b掺杂c/sio2多孔复合材料在co2选择性吸附中的应用。14.本发明的有益效果:15.1、本发明首次以间苯二酚与甲醛缩聚后的酚醛树脂为碳前躯体,以聚醚 f127为结构导向剂,以硼酸三异丙酯为掺杂硼源,以正硅酸四乙酯作为硅源,在水热条件下,一步合成微米级球形核壳结构的b掺杂c/sio2多孔复合材料,将硼元素掺杂到碳骨架中,操作方法简单,工艺稳定、掺杂量可控,不产生多余废液,绿色环保。16.2、本发明制出的核壳结构的b掺杂c/sio2多孔复合材料,该复合材料以b 掺杂的碳为核,以二氧化碳硅为壳,其具有微孔-介孔结构,孔径大比较均一,平均孔径分布较为集中,比表面积分布在350~560m2/g,孔容大约为0.18cm3/g,平均孔径分布在3.5nm左右,最可几孔径分布在3.75nm左右。17.3、本发明制出的核壳结构的b掺杂c/sio2多孔复合材料对co2的吸附量高达41.46745cm3/g。与其他掺杂元素相比,硼掺杂引起的酸碱双重性,使得co2与c/sio2复合材料表面的环氧化物共同活化,进而使c/sio2多孔材料对co2具有高反应活性和高选择性;同时,硼作为第三主族中唯一的非金属元素,与c 原子半径相近,因此,b元素的掺杂对多孔碳材料的晶格发生畸变的影响较小,对复合材料的抗氧化性和石墨化程度都有积极的影响。附图说明18.图1为实施例1制出的bmc-0.025样品的红外光谱图;19.图2为实施例2制出的bmc-0.05样品的热重分析曲线,其中,a为未烧时的曲线,b为已烧后的曲线;20.图3为实施例2制出的bmc-0.05样品的xrd广角谱图;21.图4-5为实施例2制出的bmc-0.05样品不同放大倍数下的sem图;22.图6为实施例1-6及对比例制出的样品的co2等温吸附曲线;23.图7为本发明核壳结构的b掺杂c/sio2多孔复合材料的制备方法流程图。具体实施方式24.下面结合实施例对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。25.本发明提供一实施例的核壳结构的b掺杂c/sio2多孔复合材料的制备方法,包括以下步骤:26.s1:将聚醚f127溶解于体积浓度为50%的乙醇溶液中,加入间苯二酚,在 25℃室温下搅拌后,再加入浓盐酸和硼酸三异丙酯,搅拌1h,再加入正硅酸四乙酯,继续搅拌后,逐滴加入甲醛,继续搅拌24h,得混合溶液;所述聚醚f127、乙醇溶液、间苯二酚、浓盐酸、硼酸三异丙酯、正硅酸四乙酯、甲醛的用量比例为5.02g:40ml:3.3033g:(15-120)mmol:(495-1480)μl:6.75ml:6.02ml;27.s2:将所得混合溶液转移至反应釜中,100℃恒温老化24h,再离心、洗涤至中性后,置于70℃干燥箱过夜烘干,得多孔复合材料半成品;28.s3:将多孔复合材料半成品研磨后放入管式炉中,以2℃/min的升温速率升至350℃,保温2h,继续以2℃/min的升温速率升至650℃,保温4h后,冷却至25℃室温,所获得的黑色粉末即为b掺杂c/sio2多孔复合材料。29.本发明还进一步提供该实施例制备方法制出具有核壳结构的b掺杂c/sio2多孔复合材料在co2选择性吸附中的应用。30.该实施例首次以间苯二酚与甲醛缩聚后的酚醛树脂为碳前躯体,以聚醚 f127为结构导向剂,以硼酸三异丙酯为掺杂硼源,以正硅酸四乙酯作为硅源,在水热条件下,一步合成核壳结构的b掺杂c/sio2多孔复合材料,将硼元素掺杂到碳及氧化硅的骨架中,操作方法简单,工艺稳定、掺杂量可控,不产生多余废液,绿色环保。31.该实施例制出的b掺杂c/sio2多孔复合材料具有微孔-介孔结构,孔径大小比较均一,平均孔径分布较为集中,比表面积分布在350~560m2/g,孔容大约为 0.18cm3/g,平均孔径分布在3.5nm左右,最可几孔径分布在3.75nm左右。32.该实施例制出的b掺杂c/sio2多孔复合材料对co2的吸附量高达 41.46745cm3/g。与其他掺杂元素相比,硼掺杂引起的酸碱双重性,使得co2与 c/sio2复合材料表面的环氧化物共同活化,进而使c/sio2多孔材料对co2具有高反应活性和高选择性;同时,硼作为第三主族中唯一的非金属元素,与c原子半径相近,因此,b元素的掺杂对多孔碳材料的晶格发生畸变的影响较小,对复合材料的抗氧化性和石墨化程度都有积极的影响。33.实施例134.s1:将5.02g聚醚f127溶解于40ml体积浓度为50%的乙醇溶液中,40℃水浴加热搅拌,再加入3.3033g间苯二酚,在25℃室温下搅拌后,再加入15mmol 浓盐酸和495μl硼酸三异丙酯,搅拌1h,再加入6.75ml正硅酸四乙酯,继续搅拌后,逐滴加入6.02ml甲醛,继续搅拌24h,得混合溶液;35.s2:将所得混合溶液转移至反应釜中,100℃恒温老化24h,再离心、洗涤至中性后,置于70℃干燥箱过夜烘干,得多孔复合材料半成品;36.s3:将多孔复合材料半成品研磨后放入管式炉中,以2℃/min的升温速率升至350℃,保温2h,继续以2℃/min的升温速率升至650℃,保温4h后,冷却至25℃室温,所获得的黑色粉末即为核壳结构的b掺杂c/sio2多孔复合材料,记作bmc-0.025。37.实施例2-6及对比例的制备方法与实施例1相同,区别在于:硼酸三异丙酯和盐酸的用量不同,具体用量如下表所示:[0038][0039]对实施例1-6及对比例制出的多孔复合材料进行性能表征及co2吸附测试[0040]1)红外光谱分析:[0041]红外光谱是在赛默飞世尔科技公司的型号为nicoletis10红外光谱仪上采集的,准备在120℃环境下过夜烘干的实施例1制出的bmc-0.025样品粉末和 kbr,两者以1:100的比例进行研磨,压片,测试。[0042]图1为实施例1制出的bmc-0.025样品的红外光谱图:由图1可知,在波数3560cm-1,3480cm-1,3410cm-1处有的吸收峰,应属于为归属于游离态、二分子缔合、多分子缔合形式的-oh的伸缩振动峰,而在2910cm-1,2450cm-1出现弱的吸收峰为-ch3和-ch2的伸缩振动峰和反伸缩振动峰,由于部分有机物未烧制完全导致。吸收峰在1100cm-1处出现的强而宽的吸收峰和在818cm-1处出现的吸收分别峰归属于si-o-si反对称伸缩振动吸收峰和si-o键对称伸缩振动吸收峰。在1620cm-1附近出现的峰是水的h-o-h弯曲振动。吸收峰1550cm-1,1710cm-1处的峰应该为苯环的c=c骨架振动峰。在波数为1350cm-1处有bo3的伸缩振动峰,在1010cm-1处有着b-c的摇摆振动峰,这说明硼元素被成功引入到多孔c/sio2复合材料中。[0043]2)热重分析[0044]热重分析使用的是耐驰科学仪器商贸(上海)有限公司的型号为 tg-sta2500regulu的同步热分析仪。称取10mg实施例2制出的bmc-0.05样品粉末放置在坩埚里,用氮气做实验的保护气,设置初始温度25℃,升温速率为10℃/min到50℃,恒温15min,再以10℃/min升温,终止温度为800℃。[0045]图2为实施例2制出的bmc-0.05样品的热重分析曲线,其中,a为未碳化的曲线,b为碳化后的曲线:图2a所示,未烧的硼掺杂c/sio2多孔复合材料的失重曲线从25-200℃失重率达到3.3%,为表面吸附水的失重;而在200-800℃之后有较明显的失重,其由未碳化的酚醛树脂和表面活性剂的所引起失重;而碳化后样品的热重曲线2b所示可知,样品经过高温碳化后,失重率明显下降,从 25-800℃失重率只有6.23%,该结果说明在高温加热过程中大部分有机物被成功碳化。[0046]3)x射线粉末衍射分析[0047]样品的xrd分析在日本rigaku公司的型号为smartlab-se的x射线衍射仪上进行的,仪器辐射来源为cu靶α射线,x射线波长为0.154nm;工作电压为 40kv;工作电流为50ma。广角扫描范围5-80o。[0048]图3为实施例2制出的bmc-0.05样品的xrd广角谱图:由图3可知,该复合材料在碳22°左右有一个较宽的衍射峰,其归属于无定型的sio2产生的衍射峰,同时无定型碳的22°左右也会产生一个较宽的衍射峰;另外,在45°出现的较弱的衍射峰,归属为石墨化碳的特征衍射峰,该结果说明c/sio2复合材料被成功合成。[0049]4)扫描电镜分析[0050]硼掺杂c/sio2多孔复合材料样品粉末的扫描电镜分析用的是型号为 hitachisu8010的扫描电镜仪器。样品在测量之前经过研磨,超声处理,加速电压为3.00kv,工作距离为7.0mm[0051]图4-5为实施例2制出的bmc-0.05样品不同放大倍数下的sem图:从图 4-5中,可以看出该复合材料具有球形度较好的球形形貌,表面呈现由二氧化硅壳层形成的粗糙结构,由其粒径尺寸在5μm~8μm之间。[0052]5)孔结构参数分析[0053]表1列出实施例1-6及对比例制出的多孔复合材料的孔结构分布参数:[0054]表1[0055][0056]由表1可知,样品bmc-0,bmc-0.025,bmc-0.05,bmc-0.075的比表面积分别为393m2/g,500m2/g,481m2/g,496m2/g说明硼能促进c/sio2复合材料形成更多的孔径,硼碳摩尔比越较小,b掺杂c/sio2多孔复合材料的比表面积越大,即低浓度的硼可以促进c/sio2多孔复合材料形成更多的孔径。[0057]样品bmc-0.075,bmc-0.075-40,bmc-0.075-60,bmc-0.075-120的比表面积分别为496m2/g,563m2/g,359m2/g,393m2/g,说明浓盐酸的用量不宜过高或过低,过低或过高均会使核壳结构的硼掺杂c/sio2多孔复合材料的比表面积变小。[0058]6)co2吸附测试[0059]首先各称取实施例1-6及对比例制出的样品管100~200mg放入样品管,样品在在150℃条件下通入氮气预处理7h,将样品管置于0℃冰水化合物冰浴的条件下进行co2吸附实验。样品分析在上海麦克默瑞提克仪器有限公司的 tristar3020sn。[0060]表2列出实施例1-6及对比例制出的多孔复合材料对co2的吸附量数据:[0061]表2[0062][0063][0064]图6为实施例1-6及对比例制出的样品的co2等温吸附曲线:由图6及表2 可知,bmc-0.075,bmc-0.05,bmc-0.025与未掺杂硼的bmc-0对co2的吸附量数据对比有着明显的区别,随着硼碳摩尔比的增加,其对co2的吸附量有着先增加后减小的趋势。当硼碳比为0.05时(即实施例2),复合材料的吸附效果最好,达到了41.46745cm3/g,由n2气吸脱附曲线可知,随着硼掺杂量的增加,比表面积呈现先增大后减小的趋势,说明比表面积的大小会影响co2的吸附量。又由bmc-0.075,bmc-0.075-40,bmc-0.075-60,bmc-0.075-120对co2的吸附量数据可知,随着催化剂盐酸用量的增加,co2吸附量呈现下降的趋势,说明盐酸使用量的增多会使复合材料吸附效果下降。[0065]尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节。









图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!




内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,发布内容不收取任何费用也不接任何广告!




免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

相关内容 查看全部