发布信息

一种输电网随机规划方法、设备及存储介质 专利技术说明

作者:admin      2022-12-06 21:26:27     405



计算;推算;计数设备的制造及其应用技术1.本发明涉及电力系统及其自动化技术领域,具体为一种输电网随机规划方法、设备及存储介质。背景技术:2.众多学者对输电网规划问题进行研究,涉及网络潮流模型、安全和可靠性标准、不确定性分析、电力市场因素、规划求解算法等方面,随着能源结构的低碳转型,风电等可再生能源在电力系统的占比不断提高,如何在电网规划过程中处理可再生能源的随机性和波动性,提升可再生能源的消纳水平,正得到越来越多的学者的关注。需求侧的灵活资源可以响应电网的价格或激励信号,主动调节负荷以维持系统的供需平衡,对于平抑可再生能源出力的波动、延缓输变电设备投资具有重要作用,将需求侧资源纳入电网规划过程能够有效提升规划的可靠性、经济性。3.数据中心负荷体量庞大、增长迅猛,是一种潜力巨大的需求响应资源。大型互联网公司常在多个地区建有数据中心,彼此之间通过光纤链路实现数据互联,区别于空调等柔性资源仅能够在时间上转移电负荷,互联数据中心可以借助工作负载调度达成时间和空间维度的负荷转移。目前仅有少部分文献在电网规划过程中考虑数据中心负荷的灵活调节能力,但未考虑常规负荷、数据中心工作负载量随机性等不确定因素。技术实现要素:4.(一)解决的技术问题5.针对现有技术的不足,本发明提供了一种输电网随机规划方法、设备及存储介质,以电网的投资成本、运行成本和数据中心的负载调度成本之和最小为目标,决策输电线路的最优规划方案,有效保护了电网和数据中心的信息隐私,可充分利用数据中心负荷的空间转移能力降低电网规划的总成本,提升规划的可靠性、经济性。6.(二)技术方案7.为实现以上目的,本发明通过以下技术方案予以实现:8.一方面,提供了一种输电网随机规划方法,该方法包括:对节点负荷量的不确定性、数据中心工作负载量的不确定性、风电机组出力的不确定性以及设备可用性的不确定性进行建模;9.建立含数据中心的电网随机规划模型,模型的最优解为输电线路的最优扩建方案;10.基于benders分解求解规划问题,电网和数据中心交互数据中心功率和benders割集,自身优化、不断迭代获得问题的最优解。11.优选的,所述对节点负荷量的不确定性进行建模具体为12.13.其中,为节点n的峰值负荷;为节点n的峰值负荷的均值;为节点n的峰值负荷的标准差。14.优选的,所述对数据中心工作负载量的不确定性进行建模具体为[0015][0016]其中,l为前端代理δ的峰值工作负载到达速率;lδ为前端代理δ的峰值工作负载到达速率的均值;lδ为前端代理δ的峰值工作负载到达速率的标准差。[0017]优选的,所述对风电机组出力的不确定性进行建模具体为[0018][0019]其中,v为风速;k》0为形状参数,c》0为比例参数,二者可根据风电场的历史风速数据进行估计;[0020]风机出力与风速的关系如下[0021][0022]其中,pwt,r为风机的额定功率;vr为风机的额定风速;vci和vco分别为风机的切入风速和切出风速。[0023]优选的,所述对设备可用性的不确定性进行建模具体为[0024][0025]其中,v为设备的运行状态,取1表示正常工作,取0表示故障停运;p(v)为设备处于v状态的概率;pfor为设备的强迫停运率。[0026]优选的,所述建立含数据中心的电网随机规划模型,模型的最优解为输电线路的最优扩建方案包括确定规划模型的目标函数和确定规划模型的约束条件。[0027]优选的,所述确定规划模型的目标函数具体为[0028]考虑静态电网规划,含数据中心的电网随机规划模型的目标为规划总成本最小:[0029]min c=cinv+cgen+ccur+caba+cdc[0030][0031][0032][0033]其中,cinv为等年值的线路投资成本;ωc为候选线路集合;cl为线路l的单位造价;为线路l最大传输功率;rl为线路l的长度;xl为线路l的投建状态,取1表示线路投建,取0表示线路不投建;i0为资金基准折现率;m为线路投资分摊的年限;cgen为发电成本;φ为不确定性场景集合;ρs为场景s发生的概率;t为划分的时段集合;τt为t时段的持续时间;γ为常规发电机组集合;为发电机组g的边际发电成本;为场景s中发电机组g在t时段的出力;ccur为切负荷惩罚成本;n为电网节点集合;为场景s中节点n在t时段的切负荷量;κcur为单位切负荷的惩罚成本;caba为弃风惩罚成本;ψ为风电机组集合;为场景s中风电机组w在t时段的弃风量;κaba为单位弃风的惩罚成本;cdc为额外的工作负载调度成本;δ为前端代理集合;ξ为数据中心集合;σ为工作负载由前端代理δ传输到数据中心ξ的带宽成本系数;本系数;为电网调度前,场景s中数据中心ξ在t时段来自前端代理δ的工作负载的平均到达速率;为场景s中数据中心ξ在t时段来自前端代理δ的工作负载的平均到达速率;max(α,β)为α和β中的较大者。[0034]优选的,所述确定规划模型的约束条件具体包括:[0035]候选线路的投建状态约束:[0036][0037]电网的运行约束:[0038]节点功率平衡约束[0039]其中,γn、ψn、ξn分别为节点n上的常规发电机组集合、风电机组集合、数据中心集合;为场景s中风电机组w在t时段的出力;为场景s中风电机组w的运行状态,取1表示正常工作,取0表示故障停运;为场景s节点n在t时段的负荷;为场景s中数据中心ξ在t时段的功率;s(l)和d(l)分别为线路l的起始和终止节点;为场景s中线路l在t时段传输的功率;[0040]已有线路的潮流约束[0041]其中,ωe为已有线路集合;bl为线路l的电纳值(取绝对值);和θ分别为场景s中线路l的起始和终止节点在t时段的相角;vl,s为场景s中线路l的运行状态,取1表示正常工作,取0表示故障停运;[0042]候选线路的潮流约束[0043][0044]其中,m为一个很大的正数;[0045]已有线路的容量约束[0046]候选线路的容量约束[0047]发电机组出力约束[0048]其中,为发电机组g的最大出力;为场景s中发电机组g的运行状态,取1表示正常工作,取0表示故障停运;[0049]切负荷量约束[0050]系统可靠性约束[0051]其中,reens,max为系统eens的最大值;[0052]弃风量约束[0053]平衡节点相角约束[0054]其中,为场景s中平衡节点在t时段的相角;[0055]数据中心的运行约束:[0056]服务器的平均cpu利用率[0057]其中,为场景s中数据中心ξ在t时段的活跃服务器数量;μξ为数据中心ξ内服务器处理工作负载的平均服务速率;[0058]服务器的总功率[0059]其中,pξ和pξ分别为数据中心ξ的活跃服务器的空闲和满载功率;[0060]数据中心的总功率[0061]其中,a和b为数据中心ξ的功率系数;[0062]工作负载平衡约束[0063]其中,为场景s中前端代理δ在t时段的工作负载的平均到达速率;[0064]工作负载处理延迟约束工作负载处理延迟约束[0065]其中,d为工作负载的最大延迟时间;[0066]工作负载量约束[0067]活跃服务器数量约束[0068]其中,mξ为数据中心ξ内的服务器总数量。[0069]再一方面,提供了一种设备,所述设备包括:[0070]至少一个处理器;[0071]存储器,用于存储至少一个程序;[0072]当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现上述的一种输电网随机规划方法。[0073]又一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有执行上述的一种输电网随机规划方法的计算机程序。[0074](三)有益效果[0075]本发明一种输电网随机规划方法、设备及存储介质,提供的方法以电网的投资成本、运行成本和数据中心的负载调度成本之和最小为目标,决策输电线路的最优规划方案,有效保护了电网和数据中心的信息隐私,可充分利用数据中心负荷的空间转移能力降低电网规划的总成本,提升规划的可靠性、经济性。附图说明[0076]图1为本发明方法流程图;[0077]图2为本发明实施例中benders分解算法的总体流程图。具体实施方式[0078]下面将结合本发明的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。[0079]实施例[0080]如图1-2所示,本发明实施例提供一种输电网随机规划方法,该方法包括以下步骤:[0081](1)对节点负荷量、数据中心工作负载量、可再生能源出力、发电机组和输电线路可用性等不确定因素进行建模;[0082](2)建立含数据中心的电网随机规划模型,模型的最优解为输电线路的最优扩建方案;[0083](3)基于benders分解求解规划问题,电网和数据中心交互数据中心功率和benders割集,自身优化、不断迭代获得问题的最优解。[0084]具体的,所述步骤(1)中,对节点负荷量、数据中心工作负载量、可再生能源出力、发电机组和输电线路可用性等不确定因素进行建模,具体为:[0085](1-1)节点负荷量的不确定性[0086]电网对未来负荷的预测存在误差,假设节点负荷量服从正态分布,如下式所示:[0087][0088]其中:为节点n的峰值负荷;为节点n的峰值负荷的均值;为节点n的峰值负荷的标准差。[0089](1-2)数据中心工作负载量的不确定性[0090]受到业务增长、预测方法等的影响,数据中心运营商对未来工作负载量的预测存在误差,假设工作负载量服从正态分布,如下式所示:[0091][0092]其中:l为前端代理δ的峰值工作负载到达速率;lδ为前端代理δ的峰值工作负载到达速率的均值;lδ为前端代理δ的峰值工作负载到达速率的标准差。[0093](1-3)风电机组出力的不确定性[0094]通常认为风速服从weibull分布,其概率密度函数为:[0095][0096]其中:v为风速;k》0为形状参数,c》0为比例参数,二者可根据风电场的历史风速数据进行估计。风机出力与风速的关系如下:[0097][0098]其中:pwt,r为风机的额定功率;vr为风机的额定风速;vci和vco分别为风机的切入风速和切出风速。[0099](1-4)设备可用性的不确定性[0100]风电机组、常规发电机组、输电线路均有可能因故障而停运,假设这些设备的可用性服从0-1分布,如下式所示:[0101][0102]其中:v为设备的运行状态,取1表示正常工作,取0表示故障停运;p(v)为设备处于v状态的概率;pfor为设备的强迫停运率。[0103]根据各种不确定因素的概率分布,随机抽样生成多组不确定性场景,并基于蒙特卡洛模拟进行多场景的电网规划分析。其中,抽样方法采用拉丁超立方抽样,它可以保证抽样值覆盖整个样本空间,削减必要的场景数量。[0104]具体的,所述步骤(2)中,建立含数据中心的电网随机规划模型,模型的最优解为输电线路的最优扩建方案,具体为:[0105](2-1)确定规划模型的目标函数[0106]考虑静态电网规划,含数据中心的电网随机规划模型的目标为规划总成本最小:[0107]min c=cinv+cgen+ccur+caba+cdcꢀꢀ(6)[0108]①等年值的线路投资成本[0109][0110]其中:ωc为候选线路集合;cl为线路l的单位造价;为线路l最大传输功率;rl为线路l的长度;xl为线路l的投建状态,取1表示线路投建,取0表示线路不投建;i0为资金基准折现率;m为线路投资分摊的年限。[0111]②发电成本[0112][0113]其中:φ为不确定性场景集合;ρs为场景s发生的概率;t为划分的时段集合;τt为t时段的持续时间;γ为常规发电机组集合;为发电机组g的边际发电成本;为场景s中发电机组g在t时段的出力。[0114]③切负荷惩罚成本[0115][0116]其中:n为电网节点集合;为场景s中节点n在t时段的切负荷量;κcur为单位切负荷的惩罚成本。[0117]④弃风惩罚成本[0118][0119]其中:ψ为风电机组集合;为场景s中风电机组w在t时段的弃风量;κaba为单位弃风的惩罚成本。[0120]⑤额外的工作负载调度成本[0121]工作负载由前端代理传输到数据中心时会产生带宽成本,常建模为传输的工作负载量的线性函数,电网调度工作负载需向数据中心支付的额外带宽成本如下式所示:[0122][0123]其中:δ为前端代理集合;ξ为数据中心集合;σ为工作负载由前端代理δ传输到数据中心ξ的带宽成本系数;为电网调度前,场景s中数据中心ξ在t时段来自前端代理δ的工作负载的平均到达速率;为场景s中数据中心ξ在t时段来自前端代理δ的工作负载的平均到达速率;max(α,β)为α和β中的较大者。[0124](2-2)确定规划模型的约束条件[0125]含数据中心的电网随机规划模型的约束条件包括候选线路的投建状态约束、电网的运行约束、数据中心的运行约束。[0126]①候选线路的投建状态约束[0127][0128]②电网的运行约束[0129]电网运行约束包括节点功率平衡约束、已有线路潮流约束、候选线路潮流约束、已有线路容量约束、候选线路容量约束、发电机组出力约束、切负荷量约束、系统可靠性约束、弃风量约束、平衡节点相角约束。[0130]a、节点功率平衡约束[0131]考虑弃风、切负荷情况后,各节点功率应保持供需平衡:[0132][0133]其中:γn、ψn、ξn分别为节点n上的常规发电机组集合、风电机组集合、数据中心集合;为场景s中风电机组w在t时段的出力;为场景s中风电机组w的运行状态,取1表示正常工作,取0表示故障停运;为场景s节点n在t时段的负荷;为场景s中数据中心ξ在t时段的功率;s(l)和d(l)分别为线路l的起始和终止节点;为场景s中线路l在t时段传输的功率。[0134]b、已有线路的潮流约束[0135][0136]其中:ωe为已有线路集合;bl为线路l的电纳值(取绝对值);和分别为场景s中线路l的起始和终止节点在t时段的相角;vl,s为场景s中线路l的运行状态,取1表示正常工作,取0表示故障停运。[0137]c、候选线路的潮流约束[0138][0139]式(15)含有决策变量的乘积,可使用大m法转换为线性形式:[0140][0141]其中:m为一个很大的正数。[0142]d、已有线路的容量约束[0143][0144]e、候选线路的容量约束[0145][0146]f、发电机组出力约束[0147][0148]其中:为发电机组g的最大出力;为场景s中发电机组g的运行状态,取1表示正常工作,取0表示故障停运。[0149]g、切负荷量约束[0150][0151]h、系统可靠性约束[0152]以电量不足期望值作为系统的可靠性评价指标,需满足以下约束:[0153][0154]其中:reens,max为系统eens的最大值。[0155]i、弃风量约束[0156][0157]j、平衡节点相角约束[0158][0159]其中:为场景s中平衡节点在t时段的相角。[0160]③数据中心的运行约束[0161]数据中心的运行约束包括数据中心的用电功率、工作负载平衡约束、工作负载处理延迟约束、工作负载量约束、活跃服务器数量约束。[0162]a、数据中心的用电功率[0163]假设数据中心内所有服务器是同质的,则服务器的平均cpu利用率可计算为:[0164][0165]其中:为场景s中数据中心ξ在t时段的活跃服务器数量;μξ为数据中心ξ内服务器处理工作负载的平均服务速率。[0166]数据中心的服务器功率与cpu利用率呈线性关系,因此,服务器的总功率可表示如下:[0167][0168]其中:pξ和pξ分别为数据中心ξ的活跃服务器的空闲和满载功率。[0169]数据中心的总功率可表示为:[0170][0171]其中:a和b为数据中心ξ的功率系数。[0172]b、工作负载平衡约束[0173]到达前端代理的工作负载应全部分配到数据中心内处理,如下式所示:[0174][0175]其中:为场景s中前端代理δ在t时段的工作负载的平均到达速率。[0176]c、工作负载处理延迟约束[0177]根据m/m/1排队模型计算工作负载的处理延迟时间,需满足如下约束:[0178][0179]其中:d为工作负载的最大延迟时间。[0180]将式(28)转换为线性形式,可得下式:[0181][0182]d、工作负载量约束[0183][0184]e、活跃服务器数量约束[0185][0186]其中:mξ为数据中心ξ内的服务器总数量。[0187]具体的,所述步骤(3)中,基于benders分解求解规划问题,电网和数据中心交互数据中心功率和benders割集,自身优化、不断迭代获得问题的最优解,具体为:[0188]采用benders分解求解含数据中心的电网随机规划模型,电网不需要向数据中心提供网架结构、机组和负荷的参数等信息,数据中心也不需要向电网提供服务器数量、工作负载到达速率等信息,二者只需要交互数据中心功率和benders割集即可对模型进行求解,有效保护了电网和数据中心的隐私信息。[0189](3-1)主问题:电网的投资和运行优化[0190]benders分解的主问题为电网的投资和运行优化,用于确定输电线路的规划方案和机组出力、切负荷量、弃风量、网络潮流等电网运行状态,如下式所示:[0191][0192]其中:ηt,s为引入的辅助变量。[0193]求解主问题可以获得问题(6)的下界:[0194][0195]其中:cmp为主问题的最优解;cinv、cgen、ccur、caba分别为等年值线路投资成本、发电成本、切负荷惩罚成本、弃风惩罚成本的最优值;为辅助变量的最优值。[0196](3-2)子问题:数据中心的运行优化[0197]benders分解的子问题为数据中心的运行优化,用于确定工作负载的分配策略和活跃服务器数量等数据中心运行状态。由于每种不确定性场景中每个时段的数据中心运行优化是相互独立的,为了加快benders分解的收敛过程,采用多割集方法,将场景s中t时段的数据中心运行优化都作为一个子问题,依次求解每个子问题并向主问题添加割集,如下式所示:[0198][0199]其中:为主问题求得的数据中心用电功率的最优值;为约束的对偶变量。[0200]①若子问题(34)有最优解,生成主问题的最优割集:[0201][0202]其中:为子问题的最优解;为对偶变量的最优值。[0203]②若子问题(34)无解,引入数据中心用电功率的不平衡量,求解如下问题:[0204][0205]其中:和为数据中心用电功率的不平衡量。由此可生成主问题的可行性割集:[0206][0207]其中:为功率不平衡问题的最优解。[0208]③若所有子问题均有最优解,可以获得问题(6)的上界:[0209][0210]当问题(6)的下界和上界相等时,benders算法收敛。实际应用中,迭代终止条件可以设置为:[0211]cub-clb≤εꢀꢀ(39)[0212]其中:ε为benders分解的误差界限。[0213](3-3)benders分解的算法流程[0214]步骤1:初始化系统参数。问题(6)的下界clb=-∞,问题(6)的上界cub=+∞,设置benders分解的误差界限ε,迭代次数i置0。[0215]步骤2:电网求解投资和运行主问题(32),按式(33)计算问题(6)的下界clb。[0216]步骤3:对每种不确定性场景中的每个时段,根据主问题求得的数据中心用电功率最优值数据中心求解运行子问题(34)。如果子问题有最优解,将最优割集(35)添加到主问题;否则,求解功率不平衡问题(36),将可行性割集(37)添加到主问题。[0217]步骤4:判断是否满足所有子问题均有最优解。若满足,按式(38)计算问题(6)的上界cub;否则,i←i+1,跳转至步骤2。[0218]步骤5:判断是否满足式(39)的迭代终止条件。如果满足,输出最优规划方案;否则,i←i+1,跳转至步骤2。[0219]本发明再一实施例,提供了一种设备,所述设备包括:[0220]至少一个处理器;[0221]存储器,用于存储至少一个程序;[0222]当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现上述的一种输电网随机规划方法。[0223]本发明又一实施例,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有执行上述的一种输电网随机规划方法的计算机程序[0224]需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。









图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!




内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,发布内容不收取任何费用也不接任何广告!




免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

相关内容 查看全部