喷涂装置;染料;涂料;抛光剂;天然树脂;黏合剂装置的制造及其制作,应用技术一种n,s共掺杂红光碳点材料的制备及其在重金属离子可视化检测中的应用技术领域1.本发明涉及一种n,s共掺杂红光碳点材料的制备方法,同时涉及其对重金属离子的可视化检测,属于复合材料制备和重金属离子检测技术领域。背景技术:2.随着现代工业的进一步发展,重金属离子污染已成为全球严重的公共卫生问题。难以降解的重金属离子常以水土资源为载体进行迁移、生物富集、进而在体内产生毒性,甚至可能致癌。其中,强毒性的汞(hg)已被我国、世卫组织等国家和机构确立为优先控制的重金属污染物。3.重金属离子的传统检测主要借助于大型精密仪器。这种方法最大的优势是分析结果精确度高。但弊端是仪器价格昂贵、耗时耗力、无法实现重金属离子的实时原位检测。与传统检测方法相比,可视化检测方法引领了化学、生物传感器的发展趋势。最近,我们利用化学传感器实现了dmso-h2o溶液中cn−的可视化检测[wang j, he j, zhang j, chen z, yin x. supra. chem., 2019, 31: 713-722,wang j, he j,zhang j, chen z, liang j, chen l. spectrochim, acta part a mol. biomol. spectrosc., 2021, 252, 119526]。曾文彬等利用化学传感器实现了有机相中hg2+的荧光检测[cheng x, huang s, lei q, chen f, zheng f, zhong s, huang x, feng b, feng x, zeng w. chinese chem. lett., 2022, 33, 1861-1864]。显然,化学传感器水溶性和生物兼容性差、易形成二次污染。虽然,经由传感器分子的精准设计,在一定程度上可增强其亲水性,但无法解决生物兼容性差的弊端。因此,最有效的解决策略是将全部传感元件彻底绿色化。[0004]荧光碳量子点(cds)作为新型的碳纳米材料,具有良好的水溶性和生物兼容性。经过近二十年的快速发展,已由最初的合成研究转向性能优化以及多学科领域交叉融合的应用研究。虽然cds的发光机理仍存在争议,但无碍于其在生物医学以及传感等领域的广泛应用。通常,cds的碳质核心为荧光信号报告基团,而表面钝化基团(-nh2,ꢀ‑oh,ꢀ‑cooh等)为检测位点。重金属离子与检测位点之间的配位作用驱动cds聚集,同时引起表面电子向重金属离子的转移,结果导致荧光猝灭,由此实现重金属离子的可视化检测。[0005]目前,杂原子掺杂以及表面修饰是优化cds对hg2+选择性和灵敏度的有效策略[liu m l, chen b b, li c m, huang c z. green chem., 2019, 21: 449-471]。如you等利用hg2+(软酸)-s(软碱)之间的强亲合作用,通过n, s共掺杂的cds实现了自来水以及细胞内hg2+的原位检测[li l, yu b, you t. biosens. bioelectron., 2015. 74: 263-269]。我们课题组基于胸腺嘧啶(t)与hg2+之间的特异性络合(t-hg2+-t)作用[chen m, wang j, zhang q, zhang j, chen z, sun r. spectrochim, acta part a mol.biomol. spectrosc., 2023, 286: 121998],通过胸腺嘧啶表面修饰以及n,s共掺杂的cds,实现了hg2+的可视化检测,最低检出限(lod)低至1.56 nm。当然,cds作为新型传感材料,挑战依然存在:已报道的cds光色主要集中在蓝绿光区域,能用于hg2+检测的红光cds鲜有报道。技术实现要素:[0006]本发明的主要目的在于提供一种n,s共掺杂红光碳点材料的制备及其对重金属离子的可视化检测。以邻苯二胺为碳源和氮源、氨基硫脲为硫源,磷酸催化下水热法制备了r-cds,进而通过红外光谱以及x射线光电子能谱确证了碳点表面组成,透射电镜扫描结果显示平均粒径约为2.43 nm。r-cds在水溶液中显示红光发射,存在重金属离子(hg2+, cu2+, fe3+)时,因为配位络合导致r-cds聚集,红光猝灭,由此实现了重金属离子的可视化检测。回收率试验表明r-cds能够精确检测实际水样中的重金属离子。[0007]1、r-cds的制备将邻苯二胺、氨基硫脲加入去离子水中超声后,加入浓磷酸,于180~220 ℃下恒温反应8~10 h,待反应体系自然冷至室温后,用naoh 溶液调节混合液ph至7,静置过滤、乙醇洗涤、干燥得到紫黑色粉末即为n,s共掺杂红光碳点材料r-cds。其中,邻苯二胺、氨基硫脲的摩尔比为1:1~1:2;氨基硫脲与浓磷酸的摩尔体积比为1 mmol/ml。[0008]2、r-cds的结构表征与分析r-cds的表面组成及化学状态经由ir和xps确证。ir光谱(图 2(a))中3400 cm-1和1218 cm-1吸收为-oh/nh2的伸缩/弯曲振动,2923和2853 cm-1为饱和c-h伸缩振动吸收、1594 cm-1吸收峰说明存在羰基,c=c、c-n和c-o-c基团的伸缩振动吸收出现在1506、1445和1152 cm-1,位于593 cm-1的振动吸收说明存在c-s-c基团。xps总谱(图 2(b))表明r-cds中主要包含c、n、o、s、p五种元素,百分含量依次为67.78、4.73、20.36、5.8和1.32。高分辨xps精细图谱进一步表明,c1s分裂峰为284.42 ev(c=c/c-c)、285.94 ev(c-c/c-o)、287.82 ev(c=o/c=o/c=s)(图3a)。能量为398.45和399.68 ev分裂峰对应于吡啶和吡咯n原子(图3b)。图3c中163.82和164.45 ev的能谱说明存在c-sn-c(n=1, 2)和c=s基团。c−o-c、c-o和c=o的o1s分裂峰分别出现在531.3,533.69,530.92 ev(图3d)。ftir和xps分析结果表明,r-cds表面富集n、o、s相关基团,这为重金属离子提供了高密度络合位点。[0009]如图4所示,拉曼光谱峰(1377 cm-1和1441 cm-1)说明存在石墨化碳点结构,xrd中26.3°的衍射峰证明了石墨化(002)晶面的存在。而tem图片(图5)表明r-cds球形单分散,平均粒径为2.43ꢀ±ꢀ0.61 nm,高分辨图片中无法观察到明确的晶格条纹。上述表征结果共同说明r-cds为无定型碳质结构。[0010]3、r-cds的光物理性能利用光谱实验,首先考察了r-cds光物理性能。在紫外-可见吸收光谱中(图6(a)),285 nm吸收峰归属碳点表面c=c和c=n功能基团的π-π*跃迁,表面c=n和c=o基团的n-π*跃迁吸收出现在可见光区,因此溶液颜色为粉红色。540 nm激发下,碳点在600nm和640 nm出现双发射(图6(b))。365 nm紫外灯下可观察到红色荧光溶液,色坐标为(0.63, 0.37)(图6(c))。当改变激发波长(400-580 nm)时(图7),双发射峰的位置并没有明显改变,但荧光强度呈先升高后降低的趋势,说明碳点无激发波长依赖性,碳点具有均匀的表面结构。r-cds红光量子产率和荧光寿命分别为9.87%(图8a)和2.20 ns(图8b)。[0011]4、r-cds的稳定性考虑到实际应用中环境效应对光学性能造成的可能影响,考察了ph﹑盐度以及紫外光照射下r-cds的光学稳定性。如图9所示,r-cds在365 nm紫外线连续照射60 min后,r-cds表现出较强的耐光漂白性(衰减幅度《3%)。当ph在5.03-11.05区间变化时,r-cds表现出良好的发光性能。不同盐度下(0-2.0 mol/l浓度范围),r-cds光学性能稳定。由此可见,r-cds完全能够满足实际水样中重金属离子的可视化原位检测。[0012]5、r-cds对重金属离子的可视化检测光谱测定中r-cds溶液由无水乙醇和hepes缓冲液配制(hepes : etoh = 1 : 1,v/v,ph = 6.80),r-cds储备液浓度为33.30 mg/l。荧光光谱测试中r-cds浓度均为0.83 mg/l,若无特殊说明,激发波长均为540 nm,狭缝宽度为5 nm。紫外-可见吸收光谱的测试中r-cds浓度为16.70 mg/l。无特殊说明,各种金属离子浓度均为10-2m。[0013]r-cds对重金属离子的检测灵敏度用最低检出限(lod)来表示。lod由式(1)计算得到。可视化检测方法的准确度由加标回收率方法确定,加标回收率(r)经由公式(2)计算得到。[0014]其中,sd为标准偏差,s为待测分析物浓度与检测试剂发光强度对应线性方程的斜率;cexp为加标试样测定值,c0为未加标试样测定值,cadd为加标浓度。[0015]首先,考察了重金属离子对r-cds的光谱响应,如图10、11。当在r-cds无水乙醇-hepes缓冲液中分别加入重金属离子(na+、k+、mg2+、ca2+、cd2+、co2+、ni2+、zn2+、mn2+、pb2+、ba2+、fe3+、cu2+、hg2+)时,发现fe3+、cu2+和hg2+引起荧光发射猝灭(图10(a)、(b)),伴随着荧光颜色由红变无(图10(c))。同样,当三种金属离子存在时,紫外-可见吸收光谱中可见光区的吸收消失(图11),溶液颜色从粉红变为淡黄或无色(图10(d))。而其他金属离子对r-cds溶液的光谱响应可以忽略不计。光谱实验和溶液颜色以及光色的改变说明该碳点能够可视化检测上述三种重金属离子,这种光谱响应是由于fe3+、cu2+和hg2+与碳点表面官能团之间的特异性络合所致。另外,在较宽的ph范围内(图12),r-cds对上述三种重金属离子的可视化检测依然能够实现,而且检测在1分钟之内完成(图 13)。测试结果为fe3+、cu2+和hg2+的快速高效可视化检测提供了实验依据。[0016]灵敏度是考察检测试剂对重金属离子检测能力的重要量化指标,在此,我们考察了r-cds对重金属离子的灵敏度。采用累积进样法逐渐加入hg2+于r-cds的水溶液,可观察到光谱淬灭过程,当hg2+达到5.88 nm时,荧光猝灭完全,在此过程中溶液荧光颜色由红逐渐变为无色,图14(a)。r-cds荧光淬灭效率[(f0-f)/f0]与hg2+浓度关系的进行线性拟合结果发现(图14(b)),在0.25-1.04 nm浓度范围内,两者之间表现出良好的线性关系,由此得到lod为19.02 nm。通过光谱滴定(如图15、16),得到cu2+和fe3+的lod分别为0.95 nm和0.19µm,检出限均低于世界卫生组织所规定饮用水中的最低限量,表1。光谱实验说明r-cds能够高灵敏可视化检测hg2+,cu2+和fe3+。[0017]上述实验数据已充分表明,r-cds具有检测实际水样中重金属离子的应用潜力。因此,我们考察了在自来水中重金属离子的可视化检测。以hg2+为例,实验室自来水样中未检出hg2+,经普通滤纸和孔径为0.22μm水膜过滤后直接配制hg2+和r-cds溶液,进行回收试验,其中检测量由三次平行测定结果平均值确定。当hg2+加标量分别为40, 60和80μμ时,利用r-cds可得到实际检测量分别为41.31, 59.62和80.73μμ。回收率介于99.92~104.60%。采用同样的方法可得到实际水样中cu2+和fe3+的回收率分别在97.47~103.29%区间。三种重金属离子检测的相对偏差(rsd)均小于2%,表2。结果说明,在实际水样中r-cds对三种分析物可视化检测具有较高的准确性。[0018]6、r-cds可视化检测重金属离子机理研究r-cds具有丰富的n、o、s等原子基团,结合软硬酸碱理论可知,重金属离子易与表面基团配位络合,导致电子从碱性原子向重金属离子的转移,由此,造成碳点电子空穴而荧光淬灭。为了验证我们的假设,首先利用ir光谱考察了碳点表面基团的变化。如图17所示,当在碳点中加入hg2+、fe3+和cu2+三种重金属离子后发现,-oh/-nh2在高波数区域的吸收峰几乎完全消失,而-c=o/c=n对应的振动吸收同样严重钝化。ir的变化说明重金属与表面基团存在配位作用。更为直观的证据是,加入hg2+后r-cds的tem中明显观察到因配位引起的聚集(图 18)。由此可知,r-cds对重金属离子的可视化检测是基于配位聚集诱导荧光淬灭。[0019]综上所述,本发明采用水热法制备得到双发射红光碳点(r-cds),平均粒径约为4.3 nm,属于典型的生物兼容性碳纳米材料。r-cds在水-乙醇溶液中表现出良好而稳定的光物理性能。因重金属离子与碳点表面功能基团的配位络合,导致r-cds聚集并荧光淬灭,由此实现了hg2+、fe3+和cu2+三种重金属离子可视化的检测。这种可视化的检测能在实际水样中实现。该工作为功能碳点的制备提供了理论依据,为重金属离子污染的早期预警提供了可行性方案。附图说明[0020]图1为r-cds的合成及对重金属离子的可视化检测示意图;图2为 r-cds的ir光谱(a)和xps总谱(b);图 3为r-cds的xps精细图谱图 4 为r-cds的拉曼 (a)和xrd图谱(b)图 5 为r-cds的tem(a、b)及粒径分布图(c)图 6为r-cds的紫外-可见吸收光谱(a)、荧光光谱(b)及其色坐标(c)图 7为r-cds在不同激发波长下(400ꢀ‑ꢀ580 nm)的荧光发射(a)及600 nm处的荧光强度变化趋势(b);图 8为 r-cds的荧光量子产率(a)和荧光寿命(b);图 9为不同ph(a、d)、盐度(b、e)以及365 nm紫外灯不同时间照射(c、f)条件下对r-cds荧光强度的影响;图 10为重金属离子存在下,r-cds的光谱响应(a); 600 nm处荧光强度改变(f/f0) (b)以及365 nm紫外灯(c)或日光照射下r-cd溶液荧光颜色和颜色变化图片(d);图 11为r-cds、mn+(mn+= (a) fe3+, (b) hg2+, (c) cu2+)、r-cds + mn+的紫外-可见吸收光谱;图12为不同ph下,r-cds对hg2+(a)、cu2+(b)和fe3+(c)的光谱响应;图13为r-cds对(a) cu2+、(b) hg2+和(c)fe3+的光谱响应时间曲线;图 14为(a) r-cds对hg2+(0-5.88 nm)的荧光响应(λex= 540 nm) (插图: 365 nm紫外灯辐射时,r-cds对不同浓度hg2+的光色变化);(b) hg2+浓度与(f0-f)/f0的线性拟合图和lod的计算;图15为 (a) r-cds对cu2+(0-0.19 nm)的荧光响应(λex= 540 nm) (插图: 365 nm紫外灯辐射时,r-cds对不同浓度cu2+的光色变化);(b) cu2+浓度与(f0-f)/f0的线性拟合图和lod的计算;图 16为 r-cds 对fe3+(0-9.25 nm)的荧光响应(λex= 540 nm) (插图: 365 nm紫外灯辐射时,r-cds对不同浓度fe3+的光色变化);(b) fe3+浓度与(f0-f)/f0的线性拟合图和lod的计算;图 17为r-cds和r-cds + mn+(mn+= (a) fe3+, (b) hg2+, (c) cu2+)的ftir图谱;图 18为r-cds加入hg2+前(a)后(b)的tem对照图。具体实施方式[0021]下面结合实施例对本发明的技术方案做进一步详细说明。[0022]本发明所用仪器与试剂如下:主要试剂:邻苯二胺、氨基硫脲、4-(2-羟乙基)1-哌嗪乙烷磺酸(hepes)均购于阿拉丁试剂公司。磷酸(90%)、氢氧化钠以及不同阳离子对应的硫酸盐、盐酸盐均购于重庆川东化工有限公司;实验中所使用的水均为二次水,自来水取自贵州师范大学实验室。所有药品和试剂未经进一步纯化处理。[0023]主要仪器:紫外-可见吸收光谱仪(日本岛津uv2550)、fl970荧光光谱仪(中国天美公司)、ft-irfrontier红外光谱仪(美国pe公司)、透射电子显微镜(tem,jem-2800)、x射线衍射仪(xrd,ultmaiv)、x射线光子点能谱(xps,k-alpha)、拉曼光谱仪(labramhrevolution)、上海力辰科技电热鼓风干燥箱。[0024]实施例1r-cds的制备水热法合成r-cds的具体过程如下:50ml烧杯中依次加入108.2mg(1mmol)邻苯二胺、91.1mg(1mmol)氨基硫脲、10ml去离子水,超声30min后加入1ml浓磷酸,搅拌均匀并转移至聚四氟乙烯反应釜,200℃下恒温反应10h。待反应体系自然冷至室温后,用0.1mol/lnaoh溶液调节混合液ph至7,静置过滤、95%乙醇洗涤、干燥得到紫黑色粉末。样品存储于冰箱(4℃)待用。合成过程如图1。[0025]实施例2r-cds对重金属离子的可视化检测在2mlr-cds的无水乙醇-hepes缓冲液(hepes:etoh=1:1,v/v,ph=6.80,r-cds浓度为0.83mg/l)中,分别加入50µlna+、k+、mg2+、ca2+、cd2+、co2+、ni2+、zn2+、mn2+、pb2+、ba2+、fe3+、cu2+、hg2+的水溶液(10-2m)时,若r-cds的醇-hepes缓冲液的荧光淬灭,伴随着荧光颜色由红变无,则说明加入的是fe3+、cu2+、hg2+;若r-cds的醇-hepes缓冲液荧光无明显变化,则加入的是其他重金属离子。
图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!
内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,发布内容不收取任何费用也不接任何广告!
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
一种N,S共掺杂红光碳点材料的制备及其在重金属离子可视化检测中的应用 专利技术说明
作者:admin
2023-07-07 22:37:24
672