计算;推算;计数设备的制造及其应用技术1.本发明涉及图像识别领域,具体涉及一种用于仪表扇形区域的视觉识别方法。背景技术:2.仪表识别在工业领域有着较大的使用需求与较高的使用频率,使用机器视觉算法识别替代人工识别,能够大大解放人力并降低成本。在仪表识别领域,具有扇形指示区域的仪表的指针读数识别是较为常见的项目,现有的机器视觉识别方法如申请号202010868026.3的专利《变电所扇形指针仪表图像识别方法》中所述,该专利中采用非深度学习识别180度扇形区域的指针读数,需要固定摄像机和提前确定仪表位置,且需要手动确立直角坐标系,且该专利应用对象较单一,只能处理180度向上的扇形,摄像机受外力倾斜,读数就会被影响,不耐干扰。而且,实际应用中的扇形区域的起止点、弧度大小、朝向多种多样,识别过程中需要对各种扇形区域做匹配性修改,太过复杂。技术实现要素:3.本发明的目的是提出一种用于仪表扇形区域的视觉识别方法,能够普适地解决各种扇形区域的仪表指针读数识别,并降低指针读数开发的复杂度,提高开发效率与读数稳定性。4.本发明通过以下技术方案实现:一种用于仪表扇形区域的视觉识别方法,包括如下步骤:步骤s1、将待识别仪表图像输入已训练好的深度学习分割模型,得到具有扇形区域、扇形区域的中心以及指针区域的分割图像;步骤s2、获取扇形区域的最小外接矩形;步骤s3、根据扇形区域的中心和最小外接矩形获取扇形区域的半径、扇形区域的弧度a3,具体包括如下步骤:步骤s31、根据扇形区域的中心与最小外接矩形的位置关系,判断扇形区域的弧度为大于180°的大弧或者小于等于180°的小弧;步骤s32、根据扇形区域的中心到最小外接矩形各边距离的最大值和最小值,计算扇形区域的起始边或者结束边上离圆心的最远的点在分割图像上的像素坐标,根据这两个像素坐标与扇形区域的中心即可得到起始边倾斜角a1和结束边倾斜角a2,则对于小弧,扇形区域的弧度a3=min{|a1-a2|,360-|a1-a2|},对于大弧,扇形区域的弧度a3=max{|a1-a2|,360-|a1-a2|};步骤s4、根据指针区域获取指针倾斜度a4;步骤s5、根据扇形区域的弧度a3、指针倾斜度a4得到指针旋转的比例,根据该比例与仪表总量程得到指针读数。5.进一步的,所述步骤s1中,若仪表具有圆形表盘,则对待识别图像进行透视变换后再输入深度学习分割模型以得到所述分割图像。6.进一步的,所述步骤s2中,使用opencv库的轮廓线提取函数提取所述扇形区域的轮廓,并对该轮廓使用opencv的寻找最小外接矩形函数得到所述最小外接矩形。7.进一步的,所述步骤s31中,当扇形区域的中心在最小外接矩形外部或者在最小外接矩形边上时,所述扇形区域的弧度为小弧,当扇形区域的中心在最小外接矩形内部时,所述扇形区域的弧度为大弧。8.进一步的,所述步骤s32中,确定起始边的过程为:当仪表刻度顺时针增长时,若扇形区域的弧度取值为|a1-a2|,则起始边为倾斜角较大的一边,若扇形区域的弧度取值为360-|a1-a2|,则起始边为倾斜角较小的一边。9.进一步的,所述步骤s4具体为:获取指针区域的凸包质心,并获取指针区域的凸包中距离质心最远的点,将该点与质心相连成为拟合的直线,从而获取指针倾斜度a4。10.进一步的,所述步骤s5具体为:根据公式计算指针旋转角度a5=a1-a4,则指针旋转的比例为ratio=a5/a3,将仪表总量程与该比例相乘即可得到指针读数。11.进一步的,所述深度学习分割模型为pspnet模型。12.本发明具有如下有益效果:本发明首先通过深度学习分割模型得到更为准确的具有扇形区域、扇形区域的中心以及指针区域的分割图像,再获取扇形区域的最小外接矩形,并根据扇形区域的中心和最小外接矩形获取扇形区域的半径、扇形区域的弧度,最后根据该扇形区域的弧度、指针倾斜度得到指针旋转的比例,最终得到指针读数,对待识别仪表图像的拍摄没有特别要求,过程中也无需各种扇形区域做匹配性修改,能够普适地解决各种扇形区域的仪表指针读数识别,并降低指针读数开发的复杂度,提高开发效率与读数稳定性。附图说明13.下面结合附图对本发明做进一步详细说明。14.图1为本发明的流程图。15.图2为本发明的详细流程图。16.图3为扇形的最小外接矩形示意图。17.图4为扇环的最小外接矩形示意图。18.图5为指针度数示意图。具体实施方式19.如图1和图2所示,用于仪表扇形区域的视觉识别方法一种用于仪表扇形区域的视觉识别方法,包括如下步骤:步骤s1、将待识别仪表图像输入已训练好的深度学习分割模型,得到具有扇形区域、扇形区域的中心c以及指针区域的分割图像,在本实施例中,深度学习分割模型采用金字塔场景分析网络(pspnet);其中,在拥有圆形表盘或其他圆形区域的仪表上,通过深度学习分割或提取轮廓线,在待识别图像上提取出相应的这些圆形区域所对应的椭圆区域,然后对待识别图像进行透视变换,以将椭圆校正回圆形,再将校正后的结果输入深度学习分割模型以得到所述分割图像;步骤s2、获取扇形区域的最小外接矩形,具体为:使用opencv库的轮廓线提取函数提取所述扇形区域的轮廓,并对该轮廓使用opencv的寻找最小外接矩形函数得到所述最小外接矩形;步骤s3、根据扇形区域的中心c和最小外接矩形获取扇形区域的半径、扇形区域的弧度,具体包括如下步骤:步骤s31、根据扇形区域的中心c与最小外接矩形的位置关系,判断扇形区域的弧度为大于180°的大弧或者小于等于180°的小弧;当扇形区域的中心c在最小外接矩形外部或者在最小外接矩形边上时,所述扇形区域的弧度为小弧,当扇形区域的中心c在最小外接矩形内部时,所述扇形区域的弧度为大弧,如图3所示,其中,实线对应的是小弧,虚线对应的是大弧;该判断方法也适用于扇环区域,如图4所示,其中,实线对应的是小弧,虚线对应的是大弧;步骤s32、根据扇形区域的中心到最小外接矩形各边距离的最大值和最小值,计算扇形区域的起始边或者结束边上离圆心的最远的点在分割图像上的像素坐标,根据这两个像素坐标与扇形区域的中心即可得到起始边倾斜角a1和结束边倾斜角a2,则对于小弧,扇形区域的弧度a3=min{|a1-a2|,360-|a1-a2|},对于大弧,扇形区域的弧度a3=max{|a1-a2|,360-|a1-a2|};其中,确定起始边的过程为:当仪表刻度顺时针增长时(现有的仪表刻度基本都是顺时针增长),若扇形区域的弧度取值为|a1-a2|,则起始边为倾斜角较大的一边,若扇形区域的弧度取值为360-|a1-a2|,则起始边为倾斜角较小的一边,即对于上文和下文所涉及的倾斜角采用[0,360°)范围,倾斜角逆时针增长;步骤s4、根据指针区域获取指针倾斜度a4,具体为获取指针区域的凸包的质心,并获取指针区域的凸包中距离质心最远的点,将该点与质心相连成为拟合的直线,从而获取指针倾斜度a4,其中,获取凸包的质心过程为现有技术;步骤s5、根据扇形区域的弧度a4、指针倾斜度a4以及起始边得到指针旋转的比例,根据该比例与仪表总量程得到指针读数,具体为:根据公式计算指针旋转角度a5=a1-a4,若a5《0,则通过公式a5=a5+360弥补量程限制,从而得到指针旋转的比例为ratio=a5/a3,将仪表总量程与该比例相乘即可得到指针读数,如图5所示。[0020]以上所述,仅为本发明的较佳实施例而已,故不能以此限定本发明实施的范围,即依本发明申请专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明专利涵盖的范围内。
图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!
内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,发布内容不收取任何费用也不接任何广告!
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
一种用于仪表扇形区域的视觉识别方法与流程 专利技术说明
作者:admin
2023-07-19 16:10:57
228
关键词:
计算;推算;计数设备的制造及其应用技术
专利技术