发布信息

一种基于图像平滑的噪声处理方法及系统与流程

作者:admin      2022-07-13 09:18:14     888



计算;推算;计数设备的制造及其应用技术1.本发明涉图像处理技术领域,具体涉及一种基于图像平滑的噪声处理方法及系统。背景技术:2.当今社会是信息化的时代,信息的形式不再是单纯的语音,而是发展到包括数据、文字、图像和视频等在内的多媒体形式。图像处理技术在人类生产和生活的方方面面起到了越来越重要的作用,如人们在网络上下载或者浏览图像、视频等多媒体信息,然而数字图像在数字化和传输过程中常受到成像设备与外部环境噪声干扰等影响,称为含噪图像或噪声图像。3.目前,对图像噪声的处理常用的方法是对图像进行自适应滤波,但目前对图像进行自适应滤波时,难以准确的判断自适应阈值的取值,其自适应阈值的选取较为繁琐,当自适应阈值的取值不准确时就会导致正常点被当做噪点被去除或者大量噪点未被去除的情况发生,难以保留完整的正常图像。技术实现要素:4.为了解决上述技术问题,本发明的目的在于提供一种基于图像平滑的噪声处理方法及系统,所采用的技术方案具体如下:5.第一方面,本发明一个实施例提供了一种基于图像平滑的噪声处理方法,该方法包括以下步骤:6.获取噪声图像,对所述噪声图像进行灰度化得到灰度图像,对所述灰度图像进行边缘检测得到灰度边缘图像;7.分割所述灰度图像为多个区域,获取每个所述区域内像素值的方差,对方差大于等于预设区域方差的区域进行滤波得到滤波图像,所述预设区域方差的取值范围由灰度图像进行滤波后得到的灰度滤波图的整体方差确定;不断调整所述预设区域方差得到多张滤波图像,从多张滤波图像筛选出自适应滤波图像;8.所述筛选出自适应滤波图像的方法为:9.对每张滤波图像进行边缘检测得到滤波边缘图像;所述滤波边缘图像中像素点数量和所述灰度边缘图像中的像素点数量之比作为像素点保留程度;根据所述滤波边缘图像中各像素点之间的第一距离均值和所述灰度边缘图像中各像素点之间的第二距离均值得到密集程度;所述密集程度和所述像素点保留程度加权求和得到正常点保留程度;计算所述滤波图像的信噪比,所述信噪比和所述正常点保留程度加权求和得到自适应去噪程度;选取最大自适应去噪程度对应的滤波图像为自适应滤波图像。10.优选的,所述对方差大于预设区域方差的区域进行滤波得到滤波图像,包括:11.对方差大于等于预设区域方差的区域进行滤波,方差小于预设区域方差的区域保持不变,得到滤波图像。12.优选的,所述预设区域方差的取值范围为:其中,为滤波核内一半像素点为纯黑色一半像素点为纯白色时滤波核所对应的区域方差。13.优选的,所述预设区域方差的取值范围由灰度图像进行滤波后得到的灰度滤波图的整体方差确定,还包括:14.计算滤波后滤波图像的信噪比;利用二分法根据信噪比对所述预设区域方差的取值范围进行缩放。15.优选的,所述利用二分法根据信噪比对所述预设区域方差的取值范围进行缩放,包括:16.当所述信噪比大于等于预设缩放信噪比时,选取预设区域方差的取值范围的右半部分作为更新后的预设区域方差的取值范围;17.当所述信噪比小于预设缩放信噪比时,选取预设区域方差的取值范围的左半部分作为更新后的预设区域方差的取值范围。18.优选的,所述滤波边缘图像中各像素点之间的第一距离均值为:19.从所述滤波边缘图像中选取任意像素点作为第一滤波像素点,获取与所述第一滤波像素点距离最近的点为第二滤波像素点,并计算所述第一滤波像素点与所述第二滤波像素点的距离;获取与所述第二滤波像素点距离最近的像素点为第三滤波像素点,并计算所述第二滤波像素点与所述第三滤波像素点的距离;获取与所述第三滤波像素点距离最近的像素点为第四滤波像素点,并计算所述第四滤波像素点与所述第三滤波像素点的距离,直至遍历完所述滤波边缘图像中的所有像素点;20.计算所述滤波边缘图像中各像素点对应的距离的第一距离均值。21.优选的,所述灰度边缘图像中各像素点之间的第二距离均值为:22.从所述灰度边缘图像中选取任意像素点作为第一灰度像素点,获取与所述第一灰度像素点距离最近的点为第二灰度像素点,并计算所述第一灰度像素点与所述第二灰度像素点的距离;获取与所述第二灰度像素点距离最近的像素点为第三灰度像素点,并计算所述第二灰度像素点与所述第三灰度像素点的距离;获取与所述第三灰度像素点距离最近的像素点为第四灰度像素点,并计算所述第四灰度像素点与所述第三灰度像素点的距离,直至遍历完所述灰度边缘图像中的所有像素点;23.计算所述灰度边缘图像中各像素点对应的距离的第二距离均值。24.优选的,所述根据所述滤波边缘图像中各像素点之间的距离均值和所述灰度边缘图像中各像素点之间的距离均值得到密集程度,包括:25.所述滤波边缘图像中各像素点之间的第一距离均值和所述灰度边缘图像中各像素点之间的第二距离均值的比值为所述密集程度。26.第二方面,本发明一个实施例提供了一种基于图像平滑的噪声处理系统,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述一种基于图像平滑的噪声处理方法。27.本发明实施例至少具有如下有益效果:28.本发明实施例利用图像处理技术首先获取噪声图像,对噪声图像进行灰度化得到灰度图像,对灰度图像进行边缘检测得到灰度边缘图像。将灰度图像分割成多个区域,获取每个区域内像素值的方差,对方差大于等于预设区域方差的区域进行滤波得到滤波图像,预设区域方差的取值范围由灰度图像进行滤波后得到的灰度滤波图的整体方差确定,因为有噪声点的区域其噪声点处会产生灰度跳跃,从而导致噪声点局部区域的灰度跨度较大,因此可以利用比较方差和预设区域方差的大小来判断该区域是否需要滤波。不断调整预设区域方差得到多张滤波图像,从多张滤波图像筛选出自适应滤波图像。根据滤波前后的灰度边缘图像和滤波边缘图像中像素点的数量和像素点之间的距离得到滤波后图像的正常点保留程度和自适应去噪程度,并根据滤波后图像的信噪比得到合适的预设区域方差,并得到合适的自适应滤波图像。达到了对灰度图像进行分区滤波,选取合适的预设区域方差,以消除区域中噪声点,保留正常区域中正常点的目的。附图说明29.为了更清楚地说明本发明实施例或现有技术中的技术方案和优点,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。30.图1为本发明一个实施例所提供的一种基于图像平滑的噪声处理方法的方法流程图;31.图2为本发明一个实施例所提供的一种从多张滤波图像中筛选出自适应滤波图像的方法流程图。具体实施方式32.为了更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的一种基于图像平滑的噪声处理方法及系统,其具体实施方式、结构、特征及其功效,详细说明如下。在下述说明中,不同的“一个实施例”或“另一个实施例”指的不一定是同一实施例。此外,一或多个实施例中的特定特征、结构、或特点可由任何合适形式组合。33.除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。34.本发明实施例提供了一种基于图像平滑的噪声处理方法及系统的具体实施方法,该方法适用于图像去噪场景。为了解决难以准确的判断自适应阈值的趋势的问题,本发明实施例根据滤波前后的灰度边缘图像和滤波边缘图像中像素点的数量和像素点之间的距离得到滤波后图像的正常点保留程度和自适应去噪程度,并根据滤波后图像的信噪比得到合适的预设区域方差,并得到合适的自适应滤波图像。达到了对灰度图像进行分区滤波,选取合适的预设区域方差,以消除区域中噪声点,保留正常区域中正常点的目的。35.下面结合附图具体的说明本发明所提供的一种基于图像平滑的噪声处理方法的具体方案。36.请参阅图1,其示出了本发明一个实施例提供的一种基于图像平滑的噪声处理方法的步骤流程图,该方法包括以下步骤:37.步骤s100,获取噪声图像,对噪声图像进行灰度化得到灰度图像,对灰度图像进行边缘检测得到灰度边缘图像。38.获取噪声图像,该噪声图像为rgb图像,需要说明的是噪声图像可以是直接通过rgb相机采集到的实时图像,也可以是原本就保存在图像数据库中的rgb图像。对获取到的噪声图像进行灰度化得到灰度图像,具体的:使用加权平均法进行灰度化得到噪声图像的灰度图,后续使用灰度图处理简便运算,且后续步骤还要对图像进行二值化,所以这里把图像转化为灰度图使后续的处理更加简便。39.因为高斯滤波在去除噪声时,可能会使图像变得模糊,根据频谱图可以知道,图像的噪声和边缘部分都在频谱图的最外围,而平滑噪声就是使频谱向内收缩,这样就会使图像的边缘可能会被一起消除掉,也就会使图像变得模糊,因此我们采用边缘检测的方法来筛选合适的阈值。40.对灰度图像进行边缘检测得到灰度边缘图像,在本发明实施例中利用sobel算子来进行边缘检测,sobel算子是一个离散微分算子,它结合了高斯平滑和微分求导,用来计算图像灰度函数的近似梯度,它受到更少噪声的影响。41.步骤s200,分割灰度图像为多个区域,获取每个区域内像素值的方差,对方差大于等于预设区域方差的区域进行滤波得到滤波图像,预设区域方差的取值范围由灰度图像进行滤波后得到的灰度滤波图的整体方差确定;不断调整预设区域方差得到多张滤波图像,从多张滤波图像筛选出自适应滤波图像。42.将灰度图像分割成多个区域,在本发明实施例中区域的大小设置为51*51。43.计算第i个区域内像素值的方差d(i)。对方差大于等于预设区域方差的区域进行滤波,方差小于预设区域方差的区域保持不变,得到滤波图像。即当第i个区域对应的像素值的方差d(i)大于等于预设区域方差时,可以将该区域看做是存在有噪声点的区域,对该区域进行滤波得到滤波图像;当第i个区域对应的像素值的方差d(i)小于预设区域方差时,不再对该区域进行滤波。重复对灰度图像中每块区域进行判断,得到滤波图像。44.在本发明实施例中利用高斯平滑滤波对图像进行平滑滤波,高斯滤波为全局滤波,即对整张图像进行滤波。45.其中,高斯滤波的高斯模板的大小为(2k+1,2k+1),用高斯模板在图像上进行扫描,在本发明实施例中将灰度图像划分成了多个51*51的区域,所以该高斯模板的大小也设置为(51,51),即在k的取值为25。46.自适应高斯滤波在高斯滤波的基础上增加了一个阈值的选择,我们希望在噪声区域进行平滑操作,在无噪声区域不进行平滑操作,这样既可以将模糊的影响降到最小。47.而自适应阈值的选择利用局部区域的方差来判断,是因为噪声的存在会使得噪声点处产生灰度跳跃,从而导致噪声点局部区域的灰度跨度较大,因此可以利用方差和预设区域方差的大小比较来对区域是否需要滤波进行判断。48.预设区域方差是不断调整的,本发明实施例想要通过调整预设区域方差从中找到最合适的预设区域方差。首先给出的初始预设区域方差为0,当预设区域方差为0时,即对灰度图像的每个区域都进行了平滑处理,和普通的高斯平滑滤波是一样的,然后再不断的调整预设区域方差。其中,调整预设区间方差有对应的取值范围,该取值范围被滤波核的大小所影响,当滤波核中有一半为纯黑,即有一半的像素值为255,一半为纯白时,即有一半的像素值为0时,得到预设区域方差的取值上限。需要说明的是,因为方差最大时就是数据中有一半取最大一半取最小时,故当滤波核中有一半像素点为纯黑一半为纯白时达到预设区域方差的取值上限。因为滤波核中个数固定为奇数,故在本发明实施例中纯黑比纯白的像素值多一个,滤波核的大小为(2k+1,2k+1),通过下列公式计算滤波核中纯黑像素点的数量和纯白像素点的数量。49.纯黑像素点的数量q0的计算公式为:[0050][0051]其中,2k+1为滤波核的边长。需要说明的是,滤波核为正方形的。[0052]纯白像素点的数量q1的计算公式为:[0053][0054]其中,2k+1为滤波核的边长。[0055]根据纯黑像素点的数量q0计算滤波核区域内的灰度均值。[0056]灰度均值μ0的计算公式为:[0057][0058]其中,q0为滤波核内纯黑像素点的数量;2k+1为滤波核的边长。[0059]计算当滤波核内一半为纯黑一半为纯白时滤波核所对应的最大的区域方差。[0060]该最大的区域方差的计算公式为:[0061][0062]其中,μ0为该滤波核内的灰度均值;q0为滤波核内纯黑像素点的数量;q1为滤波核内纯白像素点的数量;2k+1为滤波核的边长。[0063]则预设区域方差的取值范围的最大值为该最大区域方差,故预设区域方差的取值范围为:但对预设区域方差的取值范围内所有的预设区域方差的值都进行遍历,则相对来说计算量偏大,因此后续本发明实施例采用二分法对预设区域方差在其取值范围内进行遍历,以减少计算量。[0064]不断的调整预设区域方差,也不断的对预设区域方差的取值范围进行缩放,得到多张滤波图像,从多张滤波图像中筛选出自适应滤波图像。[0065]请参见图2,从多张滤波图像中筛选出自适应滤波图像的步骤,具体的:[0066]步骤s201,对每张滤波图像进行边缘检测得到滤波边缘图像。[0067]用不同的预设区域方差对灰度图像进行滤波,具体的滤波的步骤在上述步骤中已经详细介绍,即对灰度图像中区域对应的方差大于等于预设区域方差的区域进行滤波,对灰度图像中区域对应的方差小于预设区域方差的区域不再进行滤波,直接保留原图像,即可得到滤波后的滤波图像。[0068]对每张滤波图像进行边缘检测得到滤波边缘图像。[0069]步骤s202,滤波边缘图像中像素点数量和灰度边缘图像中的像素点数量之比作为像素点保留程度。[0070]边缘点和噪声点都属于频域中的高频部分,当进行滤波时,可能会把高频的边缘信息作为噪声去除掉,故可以通过对比滤波前后的边缘像素点的数量,来判断平滑滤波前后图像的改变程度或者说图像的保留程度。[0071]获取滤波边缘图像中边缘像素点的第一像素点数量和灰度边缘图像中边缘像素点的第二像素点数量。[0072]第一像素点数量和第二像素点数量的比值为滤波后滤波边缘图像的像素点保留程度,该像素点保留程度的范围为[0,1]。像素点保留程度越大则反映滤波后滤波边缘图像的边缘中正常点的保留度越好,保留的正常点越多。[0073]步骤s203,根据滤波边缘图像中各像素点之间的第一距离均值和灰度边缘图像中各像素点之间的第二距离均值得到密集程度。[0074]在滤波前后的滤波边缘图像和灰度边缘图像中,边缘图像中边缘点与边缘点点之间的联系都十分紧密,很少有一个边缘点和另一个边缘点之间存在很大的距离的,因为本发明实施例还利用边缘像素点之间的平均距离来反映滤波前后边缘图像中边缘轮廓是否被保留。[0075]从滤波边缘图像中选取任意像素点作为第一滤波像素点,获取与第一滤波像素点距离最近的点为第二滤波像素点,并计算第一滤波像素点与第二滤波像素点的距离;获取与第二滤波像素点距离最近的像素点为第三滤波像素点,并计算第二滤波像素点与第三滤波像素点的距离;获取与第三滤波像素点距离最近的像素点为第四滤波像素点,并计算第四滤波像素点与第三滤波像素点的距离,直至遍历完滤波边缘图像中的所有像素点。[0076]计算滤波边缘图像中各像素点对应的距离的第一距离均值。[0077]第一距离均值的计算公式为:[0078][0079]其中,m为滤波边缘图像中像素点数量;di,i+1为第i滤波像素点和第i+1滤波像素点之间的距离。[0080]从灰度边缘图像中选取任意像素点作为第一灰度像素点,获取与第一灰度像素点距离最近的点为第二灰度像素点,并计算第一灰度像素点与第二灰度像素点的距离;获取与第二灰度像素点距离最近的像素点为第三灰度像素点,并计算第二灰度像素点与第三灰度像素点的距离;获取与第三灰度像素点距离最近的像素点为第四灰度像素点,并计算第四灰度像素点与第三灰度像素点的距离,直至遍历完灰度边缘图像中的所有像素点;[0081]计算灰度边缘图像中各像素点对应的距离的第二距离均值。[0082]第二距离均值的计算公式为:[0083][0084]其中,n为灰度边缘图像中像素点数量;dj,j+1为第j灰度像素点和第j+1灰度像素点之间的距离。[0085]滤波边缘图像中各像素点之间的第一距离均值和灰度边缘图像中各像素点之间的第二距离均值的比值为密集程度,该密集程度的取值范围为[0,1]。该密集程度反映了边缘轮廓的整体保留程度,密集程度越大则反映了边缘轮廓的整体保留程度越大。[0086]步骤s204,密集程度和像素点保留程度加权求和得到正常点保留程度。[0087]可知步骤s203得到的密集程度和步骤s202得到的像素点保留程度都可以一定程度的反映滤波后滤波边缘图像的图像保留程度或者说正常点保留程度,故用密集程度和像素点保留程度进行加权求和得到正常点保留程度。密集程度越大,对应的正常点保留程度越大,密集程度和正常点保留程度成正比。同样的,像素点保留程度越大,对应的正常点保留程度越大,像素点保留程度和正常点保留程度也成正比。[0088]正常点保留程度σ的计算公式为:[0089][0090]其中,α为像素点保留程度;β为密集程度;θ为像素点保留程度调整系数;为密集程度调整系数。在本发明实施例中像素点保留程度调整系数的取值为0.2;密集程度调整系数的取值为0.8。该正常点保留程度σ越大,则平滑滤波后的图像中正常点的保留越高。[0091]其中,正常点保留程度的计算公式中像素点保留程度调整系数和密集程度调整系数分别反映了像素点保留程度和密集程度的期望程度。对滤波前的灰度边缘图计算边缘点数量时,可能会将噪声点统计至边缘点数量中,而密集程度反映的是边缘轮廓,其更多的反映边缘的形状,故本发明实施例给予密集程度更大的期望值。[0092]步骤s205,计算滤波图像的信噪比,信噪比和正常点保留程度加权求和得到自适应去噪程度。[0093]随着预设区域方差的值不断增大,方差大于预设区域方差的区域会逐渐变少,直至所有区域的方差都不再大于预设区域方差,此时认为整张图像都没有噪声,也就不再对这张图像进行处理。对于平滑滤波后的滤波图像,可以通过计算滤波图像的信噪比对滤波后的滤波图像判断其降噪效果。[0094]图像的信噪比应等于信号与噪声的功率谱之比,但通常功率谱难以计算,可以用一种近似的方式来估计图像的信噪比,即信号与噪声方差之比。[0095]首先计算滤波图像中所有像素的局部方差,将局部方差的最大值认为是信号方差,最小值认为是噪声方差,求出它们的比值,再转换成分贝(db)数。[0096]信噪比snr的计算公式为:[0097][0098]其中,s为信号方差;n为噪声方差;snr的单位为db。[0099]根据信噪比和滤波图像质量的关系得到一个信噪比界限。当信噪比为50db时,滤波图像有少量的噪声,但是滤波图像质量良好。当信噪比大于50db时,滤波图像的降噪效果优秀。当滤波图像中信噪比为60db时,滤波后的滤波图像的可以说不存在噪声。故本发明实施例给定信噪比的范围为[0,60],对信噪比进行归一化。[0100]归一化后的信噪比ε为:[0101][0102]其中,snr为归一化前的信噪比。归一化后的信噪比ε的范围为[0,1],归一化后的信噪比反映了滤波图像中噪声点的去除程度。[0103]通过正常点的正常点保留程度和滤波图像的信噪比,即可得到一张图像平滑后的自适应去噪程度,自适应去噪程度越大时,图像效果越好,自适应去噪程度越小时,图像效果越差。[0104]归一化后的信噪比和正常点保留程度加权求和得到自适应去噪程度。[0105]该自适应去噪程度ω的计算公式为:[0106]ω=a*σ+b*ε[0107]其中,σ为正常点保留程度;ε为归一化后的信噪比;a为正常点保留程度调整系数;b为信噪比调整系数。在本发明实施例中正常点保留程度调整系数和信噪比调整系数的取值均为0.5。[0108]步骤s206,选取最大自适应去噪程度对应的滤波图像为自适应滤波图像。[0109]对预设区域方差的取值范围内所有的预设区域方差的值都进行遍历,相对来说计算量是偏大,因此本发明实施例采用二分法对预设区域方差在其取值范围内进行遍历,以减少计算量。[0110]利用二分法对该取值范围进行缩放。具体的:[0111]首先取预设区域方差的取值范围的中间值,记为t1:[0112][0113]其中,为滤波核内一半像素点为纯黑色一半像素点为纯白色时滤波核所对应的区域方差。[0114]对于滤波图像,应优先考虑的是滤波图像的去噪声程度,即要保证使用预设区域方差对灰度图像进行平滑时,使得信噪比snr》50。由于信噪比使用的是对数函数来求解,当snr》50时,信噪比snr已经很难发生改变,这时候滤波图像的自适应去噪程度ω的增大主要取决于正常点保留程度σ。随着预设区域方差的增大,滤波图像中正常点保留程度越好,对于噪声点的自适应去噪程度越差,故利用二分法根据信噪比对预设区域方差的取值范围不断进行缩放。[0115]当信噪比大于等于预设缩放信噪比时,选取预设区域方差的取值范围的右半部分作为更新后的预设区域方差的取值范围。[0116]当信噪比小于预设缩放信噪比时,选取预设区域方差的取值范围的左半部分作为更新后的预设区域方差的取值范围。在本发明实施例中预设缩放信噪比为50。[0117]第r次缩放后取值范围的边界取值tr为:[0118][0119]其中,tr-1为第r-1次缩放后取值范围的边界取值;为滤波核内一半像素点为纯黑色一半像素点为纯白色时滤波核所对应的最大的区域方差;snr为信噪比。[0120]即边界取值tr为噪声自适应去噪程度的分界线,缩放后的预设区域方差的取值范围为[0,tr]。对于取值范围[0,tr],从边界取值tr开始,不断改变预设区域方差为tr-1,tr-2,……,并计算改变预设区域方差时得到的滤波图像所对应的自适应去噪程度构建自适应去噪程度序列。直至连续10个预设区域方差对应的自适应去噪程度在持续减小,则认为信噪比的增长跟不上自适应去噪程度的减小速度,此时从自适应去噪程度序列中选取最大自适应去噪程度,该最大自适应去噪程度所对应的滤波图像为自适应滤波图像。[0121]综上所述,本发明实施例利用图像处理技术首先获取噪声图像,对噪声图像进行灰度化得到灰度图像,对灰度图像进行边缘检测得到灰度边缘图像。将灰度图像分割成多个区域,获取每个区域内像素值的方差,对方差大于等于预设区域方差的区域进行滤波得到滤波图像,预设区域方差的取值范围由灰度图像进行滤波后得到的灰度滤波图的整体方差确定。不断调整预设区域方差得到多张滤波图像,从多张滤波图像筛选出自适应滤波图像。根据滤波前后的灰度边缘图像和滤波边缘图像中像素点的数量和像素点之间的距离得到滤波后图像的正常点保留程度,并根据滤波后图像的信噪比得到合适的预设区域方差,并得到合适的自适应滤波图像。达到了对灰度图像进行分区滤波,以消除区域中噪声点,保留正常区域中正常点的目的。[0122]一种基于图像平滑的噪声处理系统,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述方法的步骤。由于一种基于图像平滑的噪声处理方法在上述给出了详细描述,不再赘述。[0123]需要说明的是:上述本发明实施例先后顺序仅仅为了描述,不代表实施例的优劣。且上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。[0124]本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。[0125]以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。









图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!




内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,发布内容不收取任何费用也不接任何广告!




免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

相关内容 查看全部